Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage |
Huang, Kailang
(Institute of Dairy Science, College of Animal Sciences, Zhejiang University)
Chen, Hongwei (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) Liu, Yalu (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) Hong, Qihua (The Experimental Teaching Center, College of Animal Sciences, Zhejiang University) Yang, Bin (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) Wang, Jiakun (Institute of Dairy Science, College of Animal Sciences, Zhejiang University) |
1 | Li D, Wang Y, Zhang Y, Lin Y, Yang F. Evaluation of lactic acid bacteria isolated from alfalfa for silage fermentation. Grassl Sci 2018;64:190-8. https://doi.org/10.1111/grs.12198 DOI |
2 | Zhang Q, Yu Z, Wang X. Isolating and evaluating lactic acid bacteria strains with or without sucrose for effectiveness of silage fermentation. Grassl Sci 2015;61:167-76. https://doi.org/10.1111/grs.12097 DOI |
3 | Cai Y, Pang H, Kitahara M, Ohkuma M. Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 2012;62:1140-4. https://doi.org/10.1099/ijs.0.031781-0 DOI |
4 | Guan H, Ke W, Yan Y, et al. Screening of natural lactic acid bacteria with potential effect on silage fermentation, aerobic stability and aflatoxin B1 in hot and humid area. J Appl Microbiol 2020;128:1301-11. https://doi.org/10.1111/jam.14570 DOI |
5 | Wang S, Yuan X, Dong Z, Li J, Shao T. Characteristics of lactic acid bacteria isolated from different sources and their effects on the silage quality of oat (Avena sativa L.) straw on the Tibetan Plateau. Grassl Sci 2018;64:128-36. https://doi.org/10.1111/grs.12191 DOI |
6 | Amaral RC, Carvalho BF, Costa DM, Morenz MJF, Schwan RF, vila CLdS. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiacu. Anim Feed Sci Technol 2020;264:114472. https://doi.org/10.1016/j.anifeedsci.2020.114472 DOI |
7 | Xu D, Ding W, Ke W, Li F, Zhang P, Guo X. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front Microbiol 2019;9:3299. https://doi.org/10.3389/fmicb.2018.03299 DOI |
8 | Ding ZT, Xu DM, Bai J, et al. Characterization and identification of ferulic acid esterase-producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. J Appl Microbiol 2019;127:985-95. https://doi.org/10.1111/jam.14374 DOI |
9 | Gagen EJ, Denman SE, Padmanabha J, et al. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 2010;76:7785-95. https://doi.org/10.1128/AEM.01679-10 DOI |
10 | Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09 DOI |
11 | Sun Z, Harris HM, McCann A, et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015;6: 8322. https://doi.org/10.1038/ncomms9322 DOI |
12 | Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-200. https://doi.org/10.1093/bioinformatics/btr381 DOI |
13 | DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-72. https://doi.org/10.1128/AEM.03006-05 DOI |
14 | Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350-6. https://doi.org/10.1021/ac60111a017 DOI |
15 | Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130 DOI |
16 | Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci-Cambridge 1979;93:217-22. https://doi.org/10.1017/S0021859600086305 DOI |
17 | Contreras-Govea FE, Muck RE, Mertens DR, Weimer PJ. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim Feed Sci Technol 2011;163: 2-10. https://doi.org/10.1016/j.anifeedsci.2010.09.015 DOI |
18 | da Silva NC, Nascimento CF, Nascimento FA, de Resende FD, Daniel JLP, Siqueira GR. Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. J Dairy Sci 2018; 101:4158-67. https://doi.org/10.3168/jds.2017-13797 DOI |
19 | Mi L, Yang B, Hu X, et al. Comparative analysis of the microbiota between sheep rumen and rabbit cecum provides new insight into their differential methane production. Front Microbiol 2018;9:575. https://doi.org/10.3389/fmicb.2018.00575 DOI |
20 | Guo L, Yao D, Li D, et al. Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Front Microbiol 2020;10:2998. https://doi.org/10.3389/fmicb.2019.02998 DOI |
21 | Guan H, Yan Y, Li X, et al. Microbial communities and natural fermentation of corn silages prepared with farm bunkersilo in Southwest China. Bioresour Technol 2018;265:282-90. https://doi.org/10.1016/j.biortech.2018.06.018 DOI |
22 | Yan Y, Li X, Guan H, et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour Technol 2019;279:166-73. https://doi.org/10.1016/j.biortech.2019.01.107 DOI |
23 | Ren H, Feng Y, Pei J, et al. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. Bioresour Technol 2020;307:123238. https://doi.org/10.1016/j.biortech.2020.123238 DOI |
24 | Yang F, Wang Y, Zhao S, Wang Y. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition. Front Microbiol 2020;11:1989. https://doi.org/10.3389/fmicb.2020.01989 DOI |
25 | Carvalho BF, Sales GFC, Schwan RF, Avila CLS. Criteria for lactic acid bacteria screening to enhance silage quality. J Appl Microbiol 2021;130:341-55. https://doi.org/10.1111/jam.14833 DOI |
26 | McCullough M. Feeding quality silage. Animal Nutrition and Health; 1984. pp. 30-5. |
27 | Cai Y, Benno Y, Ogawa M, Kumai S. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J Dairy Sci 1999;82:520-6. https://doi.org/10.3168/jds.S0022-0302(99)75263-X DOI |
28 | Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC, Kung L, Jr. Silage review: Recent advances and future uses of silage additives. J Dairy Sci 2018;101:3980-4000. https://doi.org/10.3168/jds.2017-13839 DOI |
29 | Yang J, Cao Y, Cai Y, Terada F. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation. J Dairy Sci 2010;93:3136-45. https://doi.org/10.3168/jds.2009-2898 DOI |
30 | Lynch JP, O'Kiely P, Waters SM, Doyle EM. Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44. J Dairy Sci 2012;95:2070-80. https://doi.org/10.3168/jds.2011-5013 DOI |
![]() |