• Title/Summary/Keyword: Bacterial disease

Search Result 1,521, Processing Time 0.023 seconds

Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease

  • Cheng, Jinhua;Jaiswal, Kumar Sagar;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • An endophytic bacterial strain was isolated from kimchi, a Korean traditional fermented Brassica campestris and identified as Bacillus subtilis MJMP2 based on the 16S rRNA sequence. This strain showed strong antagonistic activity against Xanthomonas oryzae pv. oryzae (Xoo) KACC10331, the pathogen of bacterial rice blight disease, as well as activity against some other rice phytopathogenic fungi. The active compound was purified through size-exclusion chromatography and preparative High-performance liquid chromatography. The molecular weight was determined as m/z 1043 by mass spectroscopy, which is identical to that of iturin A. Furthermore, a crude extract from the culture supernatant of Bacillus subtilis MJMP2 showed inhibitory activity against rice blight disease in both a rice leaf explant assay and a pot assay. The crude extract also enhanced the length of roots of Arabidopsis thaliana. These results suggest that the strain Bacillus subtilis MJMP2 could be used as a biological agent to control rice blight disease.

Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars

  • Lee, Young-Hee;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.322-329
    • /
    • 2012
  • This study was conducted to investigate host and non-host disease resistances of kimchi cabbage plants to bacterial infection. Kimchi cabbage leaves responded differently to infections with a virulent strain of Xanthomonas campestris pv. campestris (Xcc) 8004 and two strains (85-10 and Bv5-4a.1) of non-host bacteria X. campestris pv. vesicatoria (Xcv). Non-host bacteria triggered a rapid tissue collapse of the leaves showing as brown coloration at the infected sites, highly increased ion leakage, lipid peroxidation and accumulation of UV-stimulated autofluorescence materials at the inoculated sites. During the observed interactions, bacterial proliferations within the leaf tissues were significantly different. Bacterial number of Xcc 8004 progressively increased within the inoculated leaf tissues over time, while growths of two non-host bacteria Xcv strains were distinctly limited. Expressions of pathogenesis-related genes, such as GST1, PR1, BGL2, VSP2, PR4 and LOX2, were differentially induced by host and non-host bacterial infections of X. campestris pathovars. These results indicated that rapid host cellular responses to the non-host bacterial infections may contribute to an array of defense reactions to the non-host bacterial invasion.

Identification of Vibrio species isolated from cultured olive flounder (Paralichthys olivaceus) in Jeju Island, South Korea

  • Sohn, Hanchang;Kim, Jeongeun;Jin, Changnam;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.7
    • /
    • pp.14.1-14.8
    • /
    • 2019
  • Olive flounder (Paralichthys olivaceus) is the major species developed for aquaculture in South Korea. Over the long history of olive flounder aquaculture, complex and diverse diseases have been a major problem, negatively impacting industrial production. Vibriosis is a prolific disease which continuously damages olive flounder aquaculture. A bacterial disease survey was performed from January to June 2017 on 20 olive flounder farms on Jeju Island. A total of 1710 fish were sampled, and bacteria from the external and internal organs of 560 fish were collected. Bacterial strains were identified using 16 s rRNA sequencing. Twenty-seven species and 184 strains of Vibrio were isolated during this survey, and phylogenetic analysis was performed. Bacterial isolates were investigated for the distribution of pathogenic and non-pathogenic species, as well as bacterial presence in tested organs was characterized. V. gigantis and V. scophthalmi were the dominant non-pathogenic and pathogenic strains isolated during this survey, respectively. This study provides data on specific Vibrio spp. isolated from cultured olive flounder in an effort to provide direction for future research and inform aquaculture management practices.

Antibacterial Activity of Streptomyces sp. J46 against Bacterial Shot Hole Disease Pathogen Xanthomonas arboricola pv. pruni (Streptomyces sp. J46의 세균성구멍병원균 Xanthomonas arboricola pv. pruni에 대한 항균 활성)

  • Lee, Jeong Eun;Lim, Da Jung;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.20-32
    • /
    • 2021
  • BACKGROUND: Bacterial shot hole of stone fruits is a seriuos plant disease caused by Xanthomonas arboricola pv. pruni (Xap). Techniques to control the disease are required. In this study, microorganisms with antibacterial activity were isolated to develop as a microbial agent against the bacterial shot hole. METHODS AND RESULTS: An isolate with the strongest activity among the isolates was identified as Streptomyces avidinii based on 16S rRNA gene sequence analysis and designated Streptomyces sp. J46. J46 showed suppression of bacterial leaf spot with a control value of 90% at 10 times-diluted cell free supernatant. To investigate antibacterial metabolites produced by J46, the supernatant of J46 was extracted with organic solvents, and the extracts were subjected to chromatography works. Antibacterial metabolites were not extractable with organic solvents. Both reverse and normal phase techniques were not successful because the metabolites were extremely water soluble. The antibacterial metabolites were not volatiles but protein compounds based on hydrolysis enzyme treatment. CONCLUSION: Our study suggests that Streptomyces sp. J46 may be a potential as an microbial agent against bacterial shot hole. Further study to identify the metabolites is required in more detail.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper (Fungicide pyraclostrobin의 고추 세균점무늬병 예방효과)

  • Kang, Beom Ryong;Lee, Jang Hoon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

Bacterial Soft rot of Kalanchoe blossfeldiana by Erwinia herbicola in Korea (Erwinia herbicola 의한 Kalanchoe blossfeldiana세균성무름병)

  • 최재을;이은정
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.15-18
    • /
    • 2000
  • A new bacterial disease was found on leaves of Kalanchoe blossfeldiana plant grown under vinyl-house condition in winter of 1998 in Taejeon. the first symptoms of the disease are the appearance of the water-soaked and light brown spots. Later they become soft rot with brown color. Causal bacteria were isolated from diseased tissues and the same symptoms as the natural infection were developed on Kalanchoe blossfeldiana leaves by needle-prick inoculation. The causal bacterium was identified Erwinia hervicola by its bacteriological characteristics. This is the first reported of this bacterium to occur on kalanchoe blossfeldiana plant in Korea. Therefore, we proposed to name the diseases as \"bacterial soft rot of Kalanchoe blossfeldiana\" by E. herbiocla.

  • PDF

Bacterial Brown Rot of Scarlet Kafir Lily (Clivia spp.) Caused by Erwinia cypripedii (Erwinia cypripedii에 의한 군자란의 세균성 갈색부패병)

  • 한광섭;최재을
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.333-335
    • /
    • 1994
  • In 1991, the leaves and roots brown rot disease of scarlet kafir lily were found in Taejon and Seoul. The symptoms were appeared as dark-brown and water soaked on leaves. The discolored area of the leaves become halo. The roots revealed blight gray and water soaked. The pathogenic bacteria were isolated from the diseased leaves of the scarlet kafir lily were identified as Erwinia cypripedii on the bais of bacterial characteristics. E. cypripedii is first described bacteria which cause the disease on scarlet kafir lily in Korea. Therefore, we would like to propose to the name of scarlet kafir lily disease caused by E. cypripedii as“bacterial brown-rot of scarlet kafir lily”hereafter.

  • PDF

Virulence of Xanthomonas translucens pv. poae Isolated from Poa annua

  • Chaves, Arielle;Mitkowski, Nathaniel
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • Bacterial wilt is a vascular wilt disease caused by Xanthomonas translucens pv. poae that infects Poa annua, a grass that is commonly found on golf course greens throughout the world. Bacterial wilt causes symptoms of etiolation, wilting, and foliar necrosis. The damage is most prevalent during the summer and the pathogen can kill turf under conditions optimal for disease development. Fifteen isolates of X. translucens pv. poae were collected from northern regions in the United States and tested for virulence against P. annua. All 15 isolates were pathogenic on P. annua, but demonstrated variable levels of virulence when inoculated onto P. annua under greenhouse conditions. The isolates were divided into two virulence groups. The first group containing four isolates generally resulted in less than 40% mortality following inoculation. The second group, containing the other eleven isolates, produced between 90 and 100% mortality following inoculation. These results suggest that differences in the virulence of bacterial populations present on a golf course may result in more or less severe amounts of observed disease.

Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt

  • Lee, Young-Hee;Choi, Chang-Won;Kim, Seong-Hwan;Yun, Jae-Gill;Chang, Seog-Won;Kim, Young-Shik;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • Efficacy of different control methods was evaluated for disease management of tomato bacterial wilt caused by $Ralstonia$ $solanacearum$. All six chemical pesticides applied to the bacterial suspension showed $in$ $vitro$ bactericidal activities against $R.$ $solanacearum$. Minimal inhibitory concentrations (MICs) of copper hydroxide (CH), copper hydroxide-oxadixyl mixture (CH+O), and copper oxychloride-dithianon mixture (CO+D) were all 200 ${\mu}g/ml$; MIC of copper oxychloride-kasugamycin (CO+K) mixture was 100 ${\mu}g/ml$; MICs of both streptomycin- validamycin (S+V) and oxine copper-polyoxine B mixture (OC+PB) were 10 ${\mu}g/ml$. Among these chemical pesticides, treatment of the detached tomato leaves with the 5 pesticides (1 mg/ml), except for OC+PB delayed early wilting symptom development caused by the bacterial inoculation ($10^6$ and $10^7$ cfu/ml). Four pesticides, CH, CH+O, CO+K and S+V, showed disease protection in pot analyses. Six plant essential oils, such as cinnamon oil, citral, clove oil, eugenol, geraniol and limonene, differentially showed their antibacterial activities $in$ $vitro$ against $R.$ $solanacearum$ demonstrated by paper disc assay. Among those, cinnamon oil and clove oil exert the most effective activity for protection from the wilt disease caused by the bacterial infection ($10^6$ cfu/ml). Treatment with cinnamon oil and clove oil also suppressed bacterial disease by a higher inoculum concentration ($10^7$ cfu/ml). Clove oil could be used for prevention of bacterial wilt disease of tomato plants without any phytotoxicity. Thus, we suggest that copper compounds, antibiotics and essential oils have potency as a controlling agent of tomato bacterial wilt.