DOI QR코드

DOI QR Code

Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars

  • Lee, Young-Hee (Department of Horticultural Sciences, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Hong, Jeum-Kyu (Department of Horticultural Sciences, Gyeongnam National University of Science and Technology (GNTech))
  • Received : 2012.04.01
  • Accepted : 2012.05.31
  • Published : 2012.09.01

Abstract

This study was conducted to investigate host and non-host disease resistances of kimchi cabbage plants to bacterial infection. Kimchi cabbage leaves responded differently to infections with a virulent strain of Xanthomonas campestris pv. campestris (Xcc) 8004 and two strains (85-10 and Bv5-4a.1) of non-host bacteria X. campestris pv. vesicatoria (Xcv). Non-host bacteria triggered a rapid tissue collapse of the leaves showing as brown coloration at the infected sites, highly increased ion leakage, lipid peroxidation and accumulation of UV-stimulated autofluorescence materials at the inoculated sites. During the observed interactions, bacterial proliferations within the leaf tissues were significantly different. Bacterial number of Xcc 8004 progressively increased within the inoculated leaf tissues over time, while growths of two non-host bacteria Xcv strains were distinctly limited. Expressions of pathogenesis-related genes, such as GST1, PR1, BGL2, VSP2, PR4 and LOX2, were differentially induced by host and non-host bacterial infections of X. campestris pathovars. These results indicated that rapid host cellular responses to the non-host bacterial infections may contribute to an array of defense reactions to the non-host bacterial invasion.

Keywords

References

  1. Abe, H., Narusaka, Y., Sasaki, I., Hatakeyama, K., Shin-I, S., Narusaka, M., Fukami-Kobayashi, K., Matsumoto, S. and Kobayashi, M. 2011. Development of full-length cDNAs from Chinese cabbage (Brassica rapa subsp. pekinensis) and identification of marker genes for defense response. DNA Res. 18:277-289. https://doi.org/10.1093/dnares/dsr018
  2. Bertini, L., Cascone, A., Tucci, M., D'Amore, R., Di Berardino, I., Buonocore V, Caporale, C. and Caruso, C. 2011. Molecular and functional analysis of new members of the wheat PR4 gene family. Biol. Chem. 387:1101-1111.
  3. Bretschneider, K. E., Gonella, M. P. and Robeson, D. J. 1989. A comparative light and electron microscopical study of compatible and incompatible interactions between Xanthomonas campestris pv. campestris and cabbage (Brassica oleracea). Physiol. Mol. Plant Pathol. 34:285-297. https://doi.org/10.1016/0885-5765(89)90026-X
  4. Conrads-Strauch, J., Dow, J. M., Milligan, D. E., Parra, R. and Daniels, M. J. 1990. Induction of hydrolytic enzymes in Brassica campestris in response to pathovars of Xanthomonas campestris. Plant Physiol. 93:238-243. https://doi.org/10.1104/pp.93.1.238
  5. Daurelio, L. D., Petrocelli, S., Blanck, F., Holuigue, L., Ottado, J. and Orellano, E. G. 2011. Transcriptome analysis reveals novel genes involved in nonhost responses to bacterial infection in tobacco. J. Plant Physiol. 168:382-391. https://doi.org/10.1016/j.jplph.2010.07.014
  6. Dixon, R. A., Harrison, M. J. and Lamb, C. J. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32:479-501. https://doi.org/10.1146/annurev.py.32.090194.002403
  7. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1:316-323. https://doi.org/10.1016/1369-5266(88)80053-0
  8. Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X. and Tang, J. L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100:10995-11000. https://doi.org/10.1073/pnas.1833360100
  9. Edwards, R., Dixon, D. P. and Walbot, V. 2000. Plant glutathione S-transferase: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5:193-198. https://doi.org/10.1016/S1360-1385(00)01601-0
  10. Essenberg, M., Pierce, M. L., Hamilton, B., Cover, E. C., Scholes, V. E. and Richardson, P. E. 1992. Development of fluorescent, hypersensitively necrotic cells containing phytoalexins adjacent to colonies of Xanthomonas campestris pv. malvacearum in cotton leaves. Physiol. Mol. Plant Pathol. 41:85-99. https://doi.org/10.1016/0885-5765(92)90002-D
  11. Guevara-Morato, M. A., de Lacoba, M. G., Garcia-Luque, I. and Serra, M. T. 2010. Characterization of a pathogenesis-related protein (PR-4) induced in Capsicum chinense $L^3$ plants with dual RNase and DNase activities. J. Exp. Bot. 61:3259-3271. https://doi.org/10.1093/jxb/erq148
  12. Hwang, I. S. and Hwang, B. K. 2010. The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol. 152:948-967. https://doi.org/10.1104/pp.109.147827
  13. Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. 2002. Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenase during hypersensitive reaction. Plant J. 32:1-12. https://doi.org/10.1046/j.1365-313X.2002.01393.x
  14. Jha, G., Rajeshwari, R. and Sonti, R. V. 2007. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 20:31-40. https://doi.org/10.1094/MPMI-20-0031
  15. Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., den Otter, F. C., van Loon, L. C. and Pieterse, C. M. J. 2008. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358-1368. https://doi.org/10.1104/pp.108.121392
  16. Kpemoua, K., Boher, B., Nicole, M., Calatayud, P. and Geiger, J. P. 1996. Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Can. J. Microbiol. 42:1131-1143. https://doi.org/10.1139/m96-145
  17. Lema, M., Soengas, P., Velasco, P., Francisco, M. and Cartea, M. E. 2011. Identification of sources of resistance to Xanthomonas campestris pv. campestris in Brassica napus crops. Plant Dis. 95:292-297. https://doi.org/10.1094/PDIS-06-10-0428
  18. Li, X., Xia, B., Jiang, Y., Wu, Q., Wang, C., He, L., Peng, F. and Wang, R. 2010. A new pathogenesis-related protein, LrPR4, from Lycoris radiate, and its antifungal activity against Magnaporthe grisea. Mol. Biol. Rep. 37:995-1001. https://doi.org/10.1007/s11033-009-9783-0
  19. Lummerzheim, M., de Oliveira, D., Castresana, C., Miguens, F. C., Louzada, E., Roby, D., van Montagu, M. and Timmerman, B. 1993. Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response. Mol. Plant-Microbe Interact. 6:532-544. https://doi.org/10.1094/MPMI-6-532
  20. Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S. and Lin, H. 2011. Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathol. J. 27:53-58. https://doi.org/10.5423/PPJ.2011.27.1.053
  21. Mur, L. A. J., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140:249-262.
  22. Mysore, K. S. and Ryu, C. M. 2004. Nonhost resistance: how much do we know? Trends Plant Sci. 9:97-104. https://doi.org/10.1016/j.tplants.2003.12.005
  23. Newman, M. A., Conrads-Strauch, J., Scofield, G., Daniels, M. J. and Dow, J. M. 1994. Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol. Plant-Microbe Interact. 7:553-563. https://doi.org/10.1094/MPMI-7-0553
  24. Oh, S. K., Lee, S., Chung, E., Park, J. M., Yu, S. H., Ryu, C. M. and Choi, D. 2006. Insight into type I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 223:1101-1107. https://doi.org/10.1007/s00425-006-0232-1
  25. Palva, T. K., Holmström, K.-O., Heino, P. and Palva, E. P. 1993. Induction of plant defense responses by exoenzymes of Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 6:190-196. https://doi.org/10.1094/MPMI-6-190
  26. Park, Y. S., Jeon, M. H., Lee, S. H., Moon, J. S., Cha, J. S., Kim, H. Y. and Cho, T. J. 2005. Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato, J. Biochem. Mol. Biol. 38:748-754. https://doi.org/10.5483/BMBRep.2005.38.6.748
  27. Ramos, L. J. and Volin, R. B. 1987. Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria. Phytopathology 77:1311-1317. https://doi.org/10.1094/Phyto-77-1311
  28. Sanchez-Vallet, A., Ramos, B., Bednarek, P., López, G., Pioelewska-Bednarek, M., Schulze-Lefert, P. and Molina, A. 2010. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectospharella cucumerina fungi. Plant J. 63:115-127.
  29. Savchenko, T., Walley, J. W., Chehab, E. W., Xiao, Y., Kaspi, R., Pye, M. F., Mohamed, M. E., Lazarus, C. M., Bostock, R. M. and Dehesh, K. 2010. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193-3205. https://doi.org/10.1105/tpc.110.073858
  30. Simpson, R. B. and Johnson, L. J. 1990. Arabidopsis thaliana as a host for Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 3:233-237. https://doi.org/10.1094/MPMI-3-233
  31. Stall, R. E., Jones, J. B. and Minsavage, G. V. 2009. Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265-284. https://doi.org/10.1146/annurev-phyto-080508-081752
  32. Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. and Grant, M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104:1075-1080. https://doi.org/10.1073/pnas.0605423104
  33. Vakili, N. G. 1967. Importance of wound in bacterial spot (Xanthomonas vesicatoria) of tomatoes in the field. Phytopathology 57:1099-1103.
  34. van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  35. van Loon, L. C. and van Strien, E. A. 1999. The families of pathogenesis- related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97. https://doi.org/10.1006/pmpp.1999.0213
  36. Wang, N., Xiao, B. and Xiong, L. 2011. Identification of a cluster of PR4-like genes involved in stress responses in rice. J. Plant Physiol. 168:2212-2224. https://doi.org/10.1016/j.jplph.2011.07.013
  37. Yamamoto, Y., Kobayashi, Y. and Matsumoto, H. 2001. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125:199-208. https://doi.org/10.1104/pp.125.1.199
  38. Yun, B. W., Atkinson, H. A., Gaborit, C., Greenland, A., Read, N. D., Pallas, J. A. and Loake, G. J. 2003. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J. 34:768-777. https://doi.org/10.1046/j.1365-313X.2003.01773.x
  39. Zhang, C., Gutsche, A. T. and Shapiro, A. D. 2004. Feedback control of the Arabidopsis hypersensitive response. Mol. Plant-Microbe Interact. 17:357-365. https://doi.org/10.1094/MPMI.2004.17.4.357

Cited by

  1. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases vol.64, pp.2, 2015, https://doi.org/10.1111/ppa.12262