Browse > Article
http://dx.doi.org/10.5423/RPD.2018.24.1.59

Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper  

Kang, Beom Ryong (Department of Applied Biology, Chonnam National University)
Lee, Jang Hoon (BASF Company Ltd., ASK/AP)
Kim, Young Cheol (Department of Applied Biology, Chonnam National University)
Publication Information
Research in Plant Disease / v.24, no.1, 2018 , pp. 59-65 More about this Journal
Abstract
Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.
Keywords
Bacterial spot disease; Induced resistance; Pyraclostrobin; Xanthomonas euvesicatoria;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Schreiber, K. and Desveaux, D. 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol. J. 24: 245-268.   DOI
2 Skandalis, N., Dimopoulou, A., Beri, D., Tzima, A., Malandraki, I., Theologidis, I. et al. 2016. Effect of pyraclostrobin application on viral and bacterial diseases of tomato. Plant Dis. 100: 1321-1330.   DOI
3 Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L. et al. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 16: 907-920.   DOI
4 Turechek, W. W., Peres, N. A. and Werner, N. A. 2006. Pre-and postinfection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Dis. 90: 862-868.   DOI
5 Udayashankar, A. C., Nayaka, C. S., Archana, B., Nayak, U., Niranjana, S. R. and Prakash, H. 2012. Strobilurins seed treatment enhances resistance of common bean against bean common mosaic virus. J. Phytopathol. 160: 710-716.
6 Vigo, S. C., Maringoni, A. C., Camara, R. C. and Lima, G. P. P. 2012. Evaluation of pyraclostrobin and acibenzolar-S-methyl on common bacterial blight of snap bean. Semin. Cienc. Agrar. 33: 167-173.
7 Yoo, S. H. 2009. List of Plant Diseases in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. 76 pp.
8 Young, J., Dye, D., Bradbury, J., Panagopoulos, C. and Robbs, C. 1978. A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 21: 153-177.   DOI
9 Oostendorp, M., Kunz, W., Dietrich, B. and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107: 19-28.   DOI
10 Anfoka, G. H. 2000. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Prot. 19: 401-405.   DOI
11 Avenot, H., Morgan, D. and Michailides, T. 2008. Resistance to pyraclostrobin, boscalid and multiple resistance to Pristine$^{(R)}$ (pyraclostrobin + boscalid) fungicide in Alternaria alternata causing alternaria late blight of pistachios in California. Plant Pathol. 57: 135-140.   DOI
12 Dietrich, R., Ploss, K. and Heil, M. 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ. 28: 211-222.   DOI
13 Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manage. Sci. 58: 649-662.   DOI
14 Bouzar, H., Jones, J., Minsavage, G., Stall, R. and Scott, J. 1994. Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology 84: 39-43.   DOI
15 Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol. 28: 201-219.   DOI
16 Doidge, E. M. 1921. A tomato canker. Ann. Appl. Biol. 7: 407-430.
17 Gardner, M. W. and Kendrick, J. 1921. Bacterial spot of tomato. J. Agric. Res. 21: 123-156.
18 Itako, A. T., Tolentino Junior, J. B., Demant, L. A. R. and Maringoni, A. C. 2014. Control of bacterial spot of tomato and activation of enzymes related to resistance by chemicals under field conditions. J. Agric. Sci. 6: 100-109.
19 Harborne, J. B. 1999. The comparative biochemistry of phytoalexin induction in plants. Biochem. Syst. Ecol. 27: 335-367.
20 Herms, S., Seehaus, K., Koehle, H. and Conrath, U. 2002. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci. Plant Physiol. 130: 120-127.   DOI
21 Itako, A. T., Tolentino Junior, J. B., Silva Junior, T. A., Soman, J. M. and Maringoni, A. C. 2015. Chemical products induce resistance to Xanthomonas perforans in tomato. Braz. J. Microbiol. 46: 701-706.   DOI
22 Karadimos, D., Karaoglanidis, G. and Tzavella-Klonari, K. 2005. Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola. Crop Prot. 24: 23-29.   DOI
23 Jones, J., Bouzar, H., Stall, R., Almira, E., Roberts, P., Bowen, B. W. et al. 2000. Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. Int. J. Syst. Evol. Microbiol. 50: 1211-1219.   DOI
24 Jones, J., Stall, R. and Bouzar, H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36: 41-58.   DOI
25 Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762.   DOI
26 Kim, J.-B. 2005. Pathogen, insect and weed control effects of secondary metabolites from plants. J. Korean Soc. Appl. Biol. Chem. 48: 1-15.
27 Kyeon, M. S., Son, S. H., Noh, Y. H., Kim, Y. E., Lee, H. I. and Cha, J. S. 2016. Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol. J. 32: 431-440.   DOI
28 Kim, J. H., Cheong, S. S., Lee, K. K., Yim, J. R. and Lee, W. H. 2015. Determination of economic control thresholds for bacterial spot on red pepper caused by Xanthomonas campestris pv. vesicatoria. Res. Plant Dis. 21: 89-93.   DOI
29 Koga, J., Ogawa, N., Yamauchi, T., Kikuchi, M., Ogasawara, N. and Shimura, M. 1997. Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44: 249-253.   DOI
30 Korea Crop Protection Association. 2017. Agrochemicals Use Guide Book. Korea Crop protection Association. URL http://www.koreacpa.org/
31 Myung, I. S., Yoon, M. J., Lee, J. Y., Kim, Y., Kwon, J. H., Lee, Y. K. et al. 2015. Bacterial spot of hot pepper, caused by Xanthomonas euvesicatoria, a new disease in Korea. Plant Dis. 99: 1640.
32 Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Plant Pathol. J. 12: 150-155.
33 Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI
34 Min, K. H., Ryu, J. P., Kim, J. M., Kim, S. H., Yim, S. H., Choi, J. J. et al. 2014. Control efficacy of the mixture of fluxapyroxad plus pyraclostrobin against Pear scab caused by Venturia nashicola. Korean J. Pestic. Sci. 18: 434-438.   DOI
35 Obradovic, A., Jones, J., Momol, M., Balogh, B. and Olson, S. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740.   DOI