Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2022.0035

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan  

Zheng, Yuanxian (Lincang Company of Yunnan Tobacco Company)
Wang, Jiming (Lincang Company of Yunnan Tobacco Company)
Zhao, Wenlong (Lincang Company of Yunnan Tobacco Company)
Cai, Xianjie (Material Procurement Center, Shanghai Tobacco Group Co., Ltd.)
Xu, Yinlian (Lincang Company of Yunnan Tobacco Company)
Chen, Xiaolong (China Tobacco Henan Industrial Co., Ltd.)
Yang, Min (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center)
Huang, Feiyan (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center)
Yu, Lei (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center)
He, Yuansheng (Lincang Company of Yunnan Tobacco Company)
Publication Information
The Plant Pathology Journal / v.38, no.3, 2022 , pp. 203-211 More about this Journal
Abstract
Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.
Keywords
fungal community; Ralstonia solanacearum; rhizosphere; soil-borne disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Loffler, F. E., O'Malley, M. A., Garcia Martin, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R. and McMahon, K. D. 2019. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17:725-741.   DOI
2 Wei, Z. 2012. Effect and mechanism of bio organic fertilizer on controlling soil borne tomato bacterial wilt. Ph.D. thesis. Nanjing Agricultural University, Nanjing, China (in Chinese).
3 Yuliar, Nion, Y. A. and Toyota, K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30:1-11.   DOI
4 Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663.   DOI
5 Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655-670.   DOI
6 Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361.   DOI
7 Liu, X., Zhang, S., Jiang, Q., Bai, Y., Shen, G., Li, S. and Ding W. 2016. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 6:36773.   DOI
8 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
9 Liu, Y. X., Li, X., Cao, Y., Ning, L. U. and Shi, J. X. 2014. Field control efficiency of tobacco specific bio-organic fertilizer on tobacco bacterial wilt. J. Plant Nutr. Fertil. 20:1203-1211 (in Chinese).
10 Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P. and Ramos, L. P. 2008. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99:1417-1424.   DOI
11 Philippot, L., Raaijmakers, J. M., Lemanceau, P. and van der Putten, W. H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.11:789-799.   DOI
12 Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.   DOI
13 Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, A. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276.   DOI
14 Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C. and Patterson, C. M. 2016. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:1-21.
15 Berendsen, R. L., Pieterse, C. M. J. and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486.   DOI
16 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1:4516-4522.   DOI
17 Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48:489-499.   DOI
18 Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270.   DOI
19 Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T. and Steinberg, C. 2007. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 39:1-23.   DOI
20 Kim, B.-S., French, E., Caldwell, D., Harrington, E. J. and IyerPascuzzi, A. S. 2016. Bacterial wilt disease: host resistance and pathogen virulence mechanisms. Physiol. Mol. Plant Pathol. 95:37-43.   DOI
21 Kinkel, L. L., Bakker, M. G. and Schlatter, D. C. 2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47-67.   DOI
22 Kuang, C. F., He, Z. M., Tang, R. Y., Huang, S. Y. and Deng, F. X. 2003. Determination of microbial number and physiological strains in soil infected with bacterical wilt. Chin. Tob. Sci. 24:43-45 (in Chinese).
23 Wieland, G., Neumann, R. and Backhaus, H. 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67:5849-5854.   DOI
24 Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., Hofrichter, M., Kruger, D. and Buscot, F. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 25:4059-4074.   DOI
25 Mendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A. and Kuramae, E. E. 2015. Soil-borne microbiome: linking diversity to function. Microb. Ecol. 70:255-265.   DOI
26 Navarrete, A. A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A. and Tsai, S. M. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 83:607-621.   DOI
27 Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. and Timothy, P. 2017. Long-term no-till: a major driver of fungal communities in dryland wheat cropping systems. PLoS ONE 12:e0184611.   DOI
28 Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.   DOI
29 Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J. and Boucher, C. A. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497-502.   DOI
30 Raghavendra, A. K. H., Bissett, A. B., Thrall, P. H., Morin, L., Steinrucken, T. V., Galea, V. J., Goulter, K. C. and van Klinken, R. D. 2017. Characterisation of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. Fungal Ecol. 26:114-124.   DOI
31 She, S., Niu, J., Zhang, C., Xiao, Y., Chen, W., Dai, L., Liu, X. and Yin, H. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199:267-275.   DOI
32 van Elsas, J. D., Garbeva, P. and Salles, J. 2002. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13:29-40.   DOI
33 Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S. and Zhao, X. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7:343.   DOI
34 Yang, S. J., Lei, L. P., Zhu, M. L., Xia, Z. Y. and Li, Y. H. 2004. Screening of the parasitical fungi of root knot nematode in tobacco. Southwest Chin. J. Agric. Sci. 17:151-154 (in Chinese).   DOI
35 Li, Y. Y., Wang, L., Peng, W. X. and Li, X. H. 2020. Analysis of the changing trend of microbial community in rhizosphere soil during different stages of tobacco bacterial wilt infection. Chin. Tob. Sci. 41:73-78 (in Chinese).
36 Zhou, X. J., Wang, J., Yang, Y. W., Zhao, T. C. and Gao, B. D. 2012. Advances in tobacco bacterial wilt disease. Microbiol. China 39:1479-1486 (in Chinese).
37 Zhang, W. N., Jia, J., Lu, X. Y., Chen, Z. J., Kong, Q. and Chen, Z. 2013. Research progress of Fusarium mycotoxins. Guangdong Agric. Sci. 40:130-133 (in Chinese).
38 He, Y. and Xue, L. 2005. Biological effects of rare earth elements and their action mechanisms. J. Appl. Ecol. 16:1983-1989 (in Chinese).
39 Liu, X. L. 2011. Infection mechanism of Paecilomyces lilacinus strains on Meloidogyne incognita. Ph.D. thesis. Anhui Agricultural University, Hefei, China (in Chinese).
40 Zheng, Y. X., Yang, M., Wang, J. M., Xu, Y. L., Cai, X. J., Huang, F. Y., Tong, W. J., Chen, X. L., Yu, L. and He, Y. S. 2021. Effects of tobacco root rot on fungal community structure in tobacco rhizosphere soil. Chin. Tob. Sci. 42:50-55 (in Chinese).
41 Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco rootknot nematodes. AMB Express 10:72.   DOI