• Title/Summary/Keyword: Bacterial community analysis

Search Result 347, Processing Time 0.024 seconds

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook;Kim, In-Su;Lee, Ju-Sam;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.885-892
    • /
    • 2011
  • The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

Analysis of excreta bacterial community after forced molting in aged laying hens

  • Han, Gi Ppeum;Lee, Kyu-Chan;Kang, Hwan Ku;Oh, Han Na;Sul, Woo Jun;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1715-1724
    • /
    • 2019
  • Objective: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. Methods: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. Results: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in premolting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. Conclusion: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.

Diagnostic Role of C-reactive Protein, Procalcitonin and Lipopolysaccharide-Binding Protein in Discriminating Bacterial-Community Acquired Pneumonia from 2009 H1N1 Influenza A Infection (박테리아성 지역사회획득 폐렴과 2009 H1N1 바이러스성 감염의 감별에 있어 C-Reactive Protein, Procalcitonin, Lipopolysaccharide-Binding Protein의 역할)

  • Han, Seon-Sook;Kim, Se-Hyun;Kim, Woo-Jin;Lee, Seung-Joon;Ryu, Sook-Won;Cheon, Myeong-Ju
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • Background: It is difficult but important to differentiate between bacterial and viral infections, especially for respiratory infections. Hence, there is an ongoing need for sensitive and specific markers of bacterial infections. We investigated novel biomarkers for discriminating community acquired bacterial pneumonia from 2009 H1N1 influenza A infections. Methods: This was a prospective, observational study of patients with community acquired bacterial pneumonia, 2009 H1N1 Influenza A infection, and healthy controls. Serum samples were obtained on the initial visit to the hospital and stored at $-80^{\circ}C$. We evaluated CRP (C-reactive protein), PCT (procalcitonin), LBP (lipopolysaccharide-binding protein) and copeptin. These analytes were all evaluated retrospectively except CRP. Receiver operating characteristic curve (ROC) analyses were performed on the resulting data. Results: Enrolled patients included 27 with community acquired bacterial pneumonia, 20 with 2009 H1N1 Influenza A infection, and 26 who were healthy controls. In an ROC analysis for discriminating community acquired bacterial pneumonia from 2009 H1N1 influenza A infection, areas under the curve (AUCs) were 0.799 for CRP (95% Confidence interval [CI], 0.664~0.934), 0.753 for PCT (95% CI, 0.613~0.892) and 0.684 for LBP (95% CI, 0.531~0.837). Copeptin was not different among the three groups. Conclusion: These findings suggest that serum CRP, PCT and LBP can assist physicians in discriminating community acquired bacterial pneumonia from 2009 H1N1 influenza A infection.

The Study of Soil Chemical Properties and Soil Bacterial Communities on the Cultivation Systems of Cnidium officinale Makino (일천궁의 연작재배에 따른 토양 이화학성 및 토양세균군집 연구)

  • Kim, Kiyoon;Han, Kyeung Min;Kim, Hyun-Jun;Jeon, Kwon Seok;Kim, Chung Woo;Jung, Chung Ryul
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • BACKGROUND: The aim of this study was to investigate the soil chemical properties and soil bacterial community of the cropping system for Cnidium officinale Makino. METHODS AND RESULTS: The bacterial community was analyzed for the relative abundance and principal coordinated analysis (PCoA analysis) by using by Illumina Miseq sequencing. The correlation analysis between soil chemical properties and soil bacterial community were analyzed by Spearman's rank correlation and DISTLM analysis. Soil bacterial community (phylum and class) showed two distinct clusters consisting of cluster 1 (first cropping) and cluster 2 (continuous cropping) from 2 different cultivation methods of Cnidium officinale Makino. PCoA and DISTLM analyses showed that soil pH and Ca significantly affected soil bacterial community in cultivation area of Cnidium officinale Makino. In addition, Spearman's rank correlation showed significant correlation between relative abundance (Acidobacteria and Actinobacteria) and soil factors (soil pH and Ca). CONCLUSION: The results of this study were considered to be important for determining the correlation between soil properties and soil bacterial community of the cropping method for Cnidium officinale Makino. Furthermore, the results will be helpful to investigate the cause of continuous cropping injury of the Cnidium officinale Makino by examining the changes of soil properties and soil bacterial communities.

Analysis of Microbial Community Structure in Soil and Crop Root System I. Analysis of Bacterial Community Structure in the Soil and Root System of Red Pepper and Tomato (토양과 작물근계의 미생물군집 구조해석 I. 고추 및 토마토 재배지 토양과 근계의 세균군집 구조해석)

  • Kim, Jong-Shik;Kwon, Soon-Wo;Lee, Seon-Ju;Jung, Beung-Gan;Song, Jae-Kyeong;Go, Soong-Ju;Ryu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.319-325
    • /
    • 1999
  • A culture-dependent survey of bacterial community in the soil-root system of red pepper and tomato was conducted by dilution plate count method. The bacterial community within soil was not different from that of rhizoplane. However, the populations of fluorescent, pseudomonads were higher in rhizoplanes than in soils and higher in healthy rhizoplanes than in Phytophthora disease-infested rhizoplanes. The bacterial community of the pepper cropped soil and rhizoplanes was very similar to that of the tomato-cropped soil and rhizoplanes. Among 285 identified bacterial colonies, most colonies were belong to two groups by fatty acid analyses: 52% of the 285 colonies were belong to low G + C gram positive bacteria group. Bacillus spp. and 33% were belong to high G + C gram positive bacteria group. In order to use beneficial microorganisms to agro-ecosystem, these data of field trials should be intensively accumulated.

  • PDF

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C.;Viero, Aline F.;Dias, Ana Carolina F.;Andreote, Fernando D.;Jesus, Ederson C.;De Paula, Sergio O.;Torres, Ana Paula R.;Santiago, Vania M.J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Jurelevicius, Diogo;Korenblum, Elisa;Casella, Renata;Vital, Ronalt Leite;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.862-870
    • /
    • 2010
  • Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.

Bacterial Diversity of the South Pacific Sponge, Dactylospongia metachromia Based on DGGE Fingerprinting (DGGE에 의한 남태평양 해면 Dactylospongia metachromia의 공생세균 다양성)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.377-382
    • /
    • 2013
  • The bacterial community structures of the marine sponge, Dactylospongia metachromia, collected from Chuuk of Micronesia on February 2012, were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints of two individuals of D. metachromia, CH607 and CH840 showed the same band patterns. The sequences derived from DGGE bands revealed 93~100% similarities with known bacterial species in the public database and high similarity with uncultured bacterial clones. The bacterial community structures of both D. metachromia sponges (CH607, CH840) were composed of 6 phyla, 8 classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes. DGGE fingerprint - based phylogenetic analysis revealed that the bacterial community profiles were identical in two individuals of the same sponge species collected from the same geographical location.

Bacterial Community Structure Shift Driven by Salinity: Analysis of DGGE Band Patterns from Freshwater to Seawater of Hyeongsan River, Korea (염도의 변화에 따른 미생물 군집의 변화: 경북 형산강 하류 미생물 군집 변화의 DGGE pattern 분석)

  • Beck, Bo Ram;Holzapfel, Wilhelm;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.406-414
    • /
    • 2013
  • The influence of a gradual increase in salinity on the diversity of aquatic bacterial in rivers was demonstrated. The denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community shift downstream in the Hyeongsan River until it joins the open ocean. Four water samples were taken from the river showing the salinity gradients of 0.02%, 1.48%, 2.63%, and 3.62%. The samples were collected from four arbitrary stations in 2.91 km intervals on average, and a DGGE analysis was performed. Based on the results of this analysis, phylogenetic similarity identification, tree analysis, and a comparison of each station were performed. The results strongly suggested that the response of the bacterial community response was concomitant to gradual changes in salinity, which implies that salt concentration is a major factor in shifting the microbiota in aquatic habitats. The results also imply a huge diversity in a relatively small area upstream from the river mouth, compared to that in open oceans or coastal regions. Therefore, areas downstream towards a river mouth or delta are could be good starting points in the search for new bacterial species and strains ("biotypes").