Browse > Article
http://dx.doi.org/10.4014/jmb.1009.09041

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)  

Hong, Sung-Wook (Division of Biological Science and Technology, Yonsei University)
Kim, In-Su (Division of Biological Science and Technology, Yonsei University)
Lee, Ju-Sam (Division of Biological Science and Technology, Yonsei University)
Chung, Kun-Sub (Division of Biological Science and Technology, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 885-892 More about this Journal
Abstract
The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.
Keywords
Denaturing gradient gel electrophoresis; bacterial community; 16S rDNA; earthworms;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Ji, N., B. Peng, G. Wang, S. Wang, and X. Peng. 2004. Universal primer PCR with DGGE for rapid detection of bacterial pathogens. J. Microbiol. Methods 57: 409-413.   DOI   ScienceOn
2 Ju, D. H., M. K. Choi, J. H. Ahn, M. H. Kim, J. C. Cho, T. S. Kim, T. S. Kim, C. N. Seong, and J. O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261.
3 Jung, Y. R., I. G. Song, J. Y. Kim, S. G. Lee, and Y. J. Kim. 2005. Microbial diversity in the soil damaged by a forest fire. J. Korra 13: 85-90.
4 Gurtner, C., J. Heyrman, G. Pinar, W. Lubitz, J. Swings, and S. Rolleke. 2000 Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int. Biodeterior. Biodegrad. 46: 229-239.   DOI   ScienceOn
5 Hong, Y., T. H. Kim, and Y. E. Na. 2001. Identity of two earthworms used in vermiculture and vermicomposting in Korea. Kor. J. Soil Zool. 17: 185-190.
6 Furlong, M. A., D. R. Singleton, D. C. Coleman, and W. B. Whitman. 2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68: 1265-1279.   DOI
7 Jany, J. L. and G. Barbier. 2008. Culture-independent methods for identifying microbial communities in cheese. Food Microbiol. 25: 839-848.   DOI   ScienceOn
8 Daniel, O. and J. M. Anderson. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24: 465-470.   DOI   ScienceOn
9 Edwards, C. A. and K. E. Fletcher. 1988. Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 24: 235-247.   DOI
10 Fasoli, S., M. Marzotto, L. Rizzotti, F. Rossi, F. Dellaglio, and S. Torriani. 2003. Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int. J. Food Microbiol. 82: 59-70.   DOI   ScienceOn
11 Araya, R., K. Tani, T. Takagi, N. Yamaguchi, and M. Nasu. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119.   DOI   ScienceOn
12 Clegg, C. D., R. D. L. Lovell, and P. J. Hobbs. 2003. The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol. Ecol. 43: 263-270.   DOI   ScienceOn
13 Leung, K. and E. Topp. 2001. Bacterial community dynamics in liquid swine manure during storage: Molecular analysis using DGGE/PCR of 16S rDNA. FEMS Microbiol. Ecol. 38: 169-177.   DOI
14 Cocolin, L., D. Aggio, M. Manzano, C. Cantoni, and G. Comi. 2002. An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int. Dairy J. 12: 407-411.   DOI   ScienceOn
15 Cocolin, L., N. Innocente, M. Biasutti, and G. Comi. 2004. The late blowing in cheese: A new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int. J. Food Microbiol. 90: 83-91.   DOI   ScienceOn
16 Aira, M., F. Monroy, and J. Dominguez. 2005. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb. Ecol. 52: 738-746.
17 Albano, H., I. Henriques, A. Correia, T. Hogg, and P. Teixeira. 2008. Characterization of microbial population of 'Alheira' (a traditional Portuguese fermented sausage) by PCR-DGGE and traditional cultural microbiological methods. J. Appl. Microbiol. 105: 2187-2194.   DOI   ScienceOn
18 Kim, H. J., K. H. Shin, C. J. Cha, and H. G. Hur. 2004. Analysis of aerobic and culturable bacterial community structures in earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 137-142.
19 Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093.
20 LaPara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman. 2002. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 36: 638-646.   DOI   ScienceOn
21 Parle, J. N. 1963. Micro-organisms in the intestines of earthworms. J. Gen. Microbiol. 31: 1-11.   DOI
22 Liew, P. W. Y. and B. C. Jong. 2008. Application of rDNA-PCR amplification and DGGE fingerprinting for detection of microbial diversity in a Malaysian crude oil. J. Microbiol. Biotechnol. 18: 815-820.
23 Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
24 Lu, C. P. 1992. Pathogenic Aeromonas hydrophila and the fish diseases caused by it. J. Fisheries China 16: 282-288.
25 Miller, K. M., T. J. Ming, A. D. Schulze, and R. E. Withler. 1999. Denaturing gradient gel electrophoresis (DGGE): A rapid and sensitive technique to screen nucleotide sequence variation in populations. BioTechniques 27: 1016-1030.
26 Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
27 Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141.   DOI   ScienceOn
28 Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, S. Molin, and D. A. Stahl. 1999. Identification of a novel group of bacteria in sludge from a deteriorate biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258.
29 Park, J. S., C. J. Sim, and K. D. An. 2009. Community structure of bacteria associated with two marine sponges from Jeju Island based on 16S rDNA-DGGE profiles. Kor. J. Microbiol. 45: 170-176.
30 Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, et al. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390-394.   DOI   ScienceOn
31 Rondon, M. R., R. M. Goodman, and J. Handelsman. 1999. The earth's bounty: Assessing and assessing soil microbial diversity. Trends Biotech. 17: 403-409.   DOI   ScienceOn
32 Possemiers, S., K. Verthe, S. Uyttendaela, and W. Verstraete. 2004. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49: 495-507.   DOI   ScienceOn
33 Rantsiou, K., R. Urso, L. Iacumin, C. Cantoni, P. Cattaneo, G. Comi, and L. Cocolin. 2005. Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Appl. Environ. Microbiol. 71: 1977-1986.   DOI   ScienceOn
34 Reeson, A. F., T. Jancovic, M. L. Kasper, S. Rogers, and A. D. Austin. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp, Vespula germanica. Insect Mol. Biol. 12: 85-91.   DOI   ScienceOn
35 Toyota, K. and M. Kimura. 1994. Earthworm disseminate a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani. Biol. Fertil. Soils 18: 32-26.   DOI   ScienceOn
36 Weid, V. D., E. Korenblum, D. Jurelevicius, A. S. Rosado, R. Dino, G. V. Sebastian, and L. Seldin. 2008. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. J. Microbiol. Biotechnol. 18: 5-14.
37 Yoshie, S., N. Noda, T. Miyano, S. Tsuneda, A. Hirata, and Y. Inamori. 2001. Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. J. Biosci. Bioeng. 92: 346-353.   DOI
38 Shin, K. H., H. Yi, J. S. Chun, C. J. Cha, I. S. Kim, and H. G. Hur. 2004. Analysis of the anaerobic bacterial community in the earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 147-152.
39 Temmerman, R., I. Scheirlinck, G. Huys, and J. Swings. 2003. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 220-226.   DOI   ScienceOn
40 Tripathi, G. and P. Bhardwaj. 2004. Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito mauritii). Bioresour. Technol. 92: 215-218.   DOI   ScienceOn
41 Toyota, K. and M. Kimura. 2000. Microbial community indigenous to the earthworm Eisenia foetida. Biol. Fertil. Soils 31: 187-190.   DOI   ScienceOn
42 Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alassatova. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species specific primers. Appl. Environ. Microbiol. 66: 297-303.   DOI   ScienceOn
43 Schabereiter-Gurtner, C., G. Pinar, W. Lubitz, and S. Rolleke. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods 45: 77-87.   DOI   ScienceOn