Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06001

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load  

Silva, Cynthia C. (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP)
Viero, Aline F. (Alberto Luiz Coimbra Institute - Graduate School and Research in Engineering (COPPE), Federal University of Rio de Janeiro)
Dias, Ana Carolina F. (Department of General Biology, Federal University of Vicosa - UFV)
Andreote, Fernando D. (Brazilian Agricultural Research - Embrapa)
Jesus, Ederson C. (Center for Microbial Ecology, Michigan State University)
De Paula, Sergio O. (Department of General Biology, Federal University of Vicosa - UFV)
Torres, Ana Paula R. (PETROBRAS R&D Center, Cidade Universitaria)
Santiago, Vania M.J. (PETROBRAS R&D Center, Cidade Universitaria)
Oliveira, Valeria M. (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 21-29 More about this Journal
Abstract
The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.
Keywords
Sludge; bacterial community; DGGE; 16S rRNA gene library; multivariate analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Lin, C.-W., C.-Y. Lai, L.-H. Chen, and W.-F. Chiang. 2007. Microbial community structure during oxygen-stimulated bioremediation in phenol-contaminated groundwater. J. Hazard. Mater. 140: 221-229.   DOI
2 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
3 Song, B., N. J. Palleroni, and M. M. Haggblom. 2000. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl. Environ. Microbiol. 66: 3446-3453.   DOI   ScienceOn
4 Ahn, S., S. Congeevaram, Y. K. Choung, and J. Park. 2008. Enhanced phenol removal by floating fungal populations in a high concentration phenol-fed membrane bioreactor. Desalination 221: 494-501.   DOI
5 Arai, H., S. Akahira, T. Ohishi, M. Maeda, and T. Kudo. 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: Organization and regulation of the genes involved in phenol degradation. Microbiology 144: 2895-2903.   DOI   ScienceOn
6 Atlas, R. M. and R. Bartha. 1998. Microbial Ecology: Fundamentals and Applications, pp. 329-477, 4th Ed. Beijaming/Cumming Science Publishing Company, Inc., Menlo Park, CA.
7 Ibekwe, A. M. and S. R. Lyon. 2007. Microbial characteristics through drinking water aquifer sand material. Eng. Life Sci. 1: 81-89.
8 White, D. 2000. The Physiology and Biochemistry of Prokaryotes, 2nd Ed. Oxford University Press., Oxford, NY.
9 Jiang, H. J., J. H. Tay, A. M. Maszenan, and S. T. L. Tay. 2004. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl. Environ. Microbiol. 70: 6767-6775.   DOI   ScienceOn
10 ter Braak, C. J. F. and P. Smilauer. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5).
11 Mao, Y., X. Zhang, X. Yan, B. Liu, and L. Zhao. 2008. Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J. Microbiol. Meth. 75: 231-236.   DOI   ScienceOn
12 Yan, J., W. Jianping, B. Jing, W. Daoquan, and H. Zongding. 2006. Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem. Eng. J. 29: 227-234.   DOI   ScienceOn
13 Zhao, W.-T., X. Huang, D.-J. Lee, X.-H. Wang, and Y.-X. Shen. 2009. Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention. J. Membrane Sci. 330: 57-64.   DOI
14 Khan, S. T. and A. Hiraishi. 2002. Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate) degrading denitrifying bacterium isolated from sludge. J. Gen. Appl. Microbiol. 48: 299-308.   DOI   ScienceOn
15 Loffler, F. E. and E. A. Edwards. 2006. Harnessing microbial activities for environmental cleanup. Curr. Opin. Microbiol. 17: 274-284.
16 Barrios-Martinez, A., E. Barbot, B. Marrot, P. Moulin, and N. Roche. 2006. Degradation of synthetic phenol-containing wastewaters by MBR. J. Membrane Sci. 281: 288-296.   DOI   ScienceOn
17 Dibenedetto, A., R. M. Lo Noce, M. Narracci, and M. Aresta. 2006. Structure-biodegradation correlation of polyphenols for Thauera aromatica in anaerobic conditions. Chem. Ecol. 22: 133-143.   DOI   ScienceOn
18 Park, J. Y. and B. Sang. 2007. Change of sludge consortium in response to sequential adaptation to benzene, toluene, and oxylene. J. Microbiol. Biotechnol. 17: 1772-1781.
19 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
20 Streit, W. R. and R. A. Schmitz. 2004. Metagenomics - The key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498.   DOI   ScienceOn
21 Viero, A. F., T. M. Melo, A. P. R. Torres, N. R. Ferreira, G. L. Sant'Anna Jr., C. P. Borges, and V. M. J. Santiago. 2008. The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. J. Membrane Sci. 319: 223-230.   DOI
22 Ewing, B., L. Hillier, M. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.
23 Valle, A., M. J. Bailey, A. S. Whiteley, and M. Manefield. 2004. N-Acyl-$_L$-homoserine lactones (AHLs) affect microbial community composition and function in sludge. Environ. Microbiol. 6: 424-433.   DOI   ScienceOn
24 Basile, L. A. and L. Erijman. 2008. Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis. Appl. Microbiol. Biotechnol. 78: 863-872.   DOI   ScienceOn
25 Duineveld, B. M., G. A. Kowalchuk, A. Keijzer, J. D. van Elsas, and J. A. van Veen. 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67: 172-178.   DOI   ScienceOn
26 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
27 Shinoda, Y., Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microbiol. 70: 1385-1392.   DOI   ScienceOn
28 Pearson, K. 1926. On the coefficient of racial likeliness. Biometrika. 18: 105-117.
29 Sueoka, K., H. Satoh, M. Onuki, and T. Mino. 2009. Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol. Lett. 291: 169-174.   DOI   ScienceOn
30 Lane, D. L., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Prog. Nat. Sci. 82: 6955-6959.   DOI   ScienceOn
31 Andreote, F. D., J. L. Azevedo, and W. L. Araujo. 2009. Assessing the diversity of bacterial communities associated with plants. Braz. J. Microbiol. (In Press).
32 Godon, J. J., E. Zumstein, P. Dabert, F. Habouzit, and R. Moletta. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63: 2802-2813.
33 Standard Methods for the Examination of Water and Wastewater. 1998. American Public Health Association, American Water Works association and Water Pollution Control Federation, 20th edition, Washington, DC.
34 Wei, G., J. Yu, Y. Zhu, W. Chen, and L. Wang. 2008. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. J. Hazard. Mater. 151: 111-117.   DOI   ScienceOn
35 Heylen, K., B. Vanparys, L. Wittebolle, N. Verstraete, N. Boon, and P. de Vos. 2006. Cultivation of denitrifying bacterium: Optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72: 2637-2643.   DOI   ScienceOn
36 Bae, H. S., J. M. Lee, Y. B. Kim, and S. T. Lee. 1996. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation 7: 463-469.
37 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.
38 Contreras, E. M., M. E. Albertario, N. C Bertola, and N. E. Zaritzky. 2008. Modelling phenol biodegradation by sludges evaluated through respirometric techniques. J. Hazard. Mater. 150: 366-374.
39 Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
40 Khardenavis, A. A., A. Kapley, and H. J. Purohit. 2007. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl. Microbiol. Biotechnol. 77: 403-409.   DOI   ScienceOn
41 Manefield, M., A. S. Whiteley, G. I. Griffiths, and M. J. Bailey. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68: 5367-5373.   DOI   ScienceOn
42 Kimura, M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI