• 제목/요약/키워드: Backstepping approach

검색결과 44건 처리시간 0.023초

신경회로망을 이용한 유도전동기의 적응 백스테핑 제어 (Adaptive Backstepping Control of Induction Motors Using Neural Network)

  • 이은욱;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

백스테핑을 이용한 카오스 Liu 시스템의 제어 (Control and Tracking Chaotic Liu Systems via Backstepping Design)

  • 유성훈;현창호;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.324-326
    • /
    • 2006
  • This paper present backstepping control approach for controling chaotic Liu system. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov Function. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical solution are shown to verify the result.

  • PDF

Synthesis and Experimental Implementation of DSP Based Backstepping Control of Positioning Systems

  • Chang, Jie;Tan, Yaolong
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2007
  • Novel nonlinear backstepping control with integrated adaptive control function is developed for high-performance positioning control systems. The proposed schemes are synthesized by a systematic approach and implemented based on a modern low-cost DSP controller, TMS320C32. A baseline backstepping control scheme is derived first, and is then extended to include a nonlinear adaptive control against the system parameter changes and load variations. The backstepping control utilizes Lyapunov function to guarantee the convergence of the position tracking error. The final control algorithm is a convenient in the implementation of a practical 32-bit DSP controller. The new control system can achieve superior performance over the conventional nested PI controllers, with improved position tracking, control bandwidth, and robustness against external disturbances, which is demonstrated by experimental results.

신경회로망을 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑 속도제어기 설계 (Design of an Adaptive Backstepping Speed Controller for Induction Motors with Uncertainties using Neural Networks)

  • 이은욱;정기철;이승학
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권11호
    • /
    • pp.476-482
    • /
    • 2006
  • Based on a field-oriented model of induction motor, an adaptive backstepping control approach using neural networks is proposed in this paper for the speed control of induction motors with uncertainties at a minimum of information. Neural networks are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities and an adaptive backstepping controller is used to derive adaptive law of neural networks and control input directly. The controller is implemented by the hardware using DSP and the effectiveness of the proposed approach is verified by carrying out the experiment.

슬라이딩모드 적응 자속관측기를 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑제어 (Adaptive Backstepping Control of Induction Motors with Uncertainties Using a Sliding Mode Adaptive flux Observer)

  • 이은욱;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.154-160
    • /
    • 2004
  • In this paper, a combined field orientation and adaptive backstepping approach using a sliding mode adaptive flux observer, is proposed for the control of induction motor In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer based on a fixed stator frame model and mechanical lumped uncertainty such as inertia moment, load torque disturbance, friction compensated by the adaptive backstepping based on a field-oriented model. Simulation results are provided to verify the effectiveness of the proposed approach.

모듈라 설계기법에 의한 적응 비서형 제어 (Adaptive nonlinear control with modular design)

  • 현근호;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.633-635
    • /
    • 1997
  • In this paper we present a scheme of adaptive backstepping controller for nonlinear system. Backstepping approach has recently been adopted as a design tool for nonlinear control and especially backstepping with modular design used to seperately design controller and identifier. In the modular design the nonlinear damping term is contained in controller for input-to-state stability (ISS). We compare the ISS controller, which used in general case, with the weak-ISS controller that attenuates the effect of nonlinear damping term and prove their advantages and disadvantages by simulation.

  • PDF

AC 서보 모터의 위치제어를 위한 비선형 적응제어 (Nonlinear adaptive control for position tracking of AC servo-motors)

  • 이현배;박정동;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.314-317
    • /
    • 1996
  • In this paper, we present a nonlinear adaptive controller for position tracking of induction motors. In constructing the adaptive controller, a backstepping approach is used under the condition of full state information, while a nonlinear observer is adopted for rotor flux estimation. The adaptive controller is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also shown via computer simulation.

  • PDF

적응형 퍼지 백스테핑 방식을 이용한 단일축 유연관절 로봇의 강인 제어 (An Adaptive Fuzzy Backstepping Approach to Robust Tracking Control of a Single-Link Flexible Joint Robot)

  • 김은태;이희진
    • 전자공학회논문지SC
    • /
    • 제41권4호
    • /
    • pp.1-12
    • /
    • 2004
  • 본 논문에서는 적응 퍼지 백스테핑 알고리즘을 이용하여 단일축 유연관절 로봇을 제어하는 새로운 알고리즘을 제안한다. 퍼지시스템은 일반근사기로 사용하여 로봇과 제어기의 비선형성과 불확실성을 상쇄하는 역할을 한다. 제안한 알고리즘은 추가적인 교시 제어기를 필요로 하지 않으며 추적오차를 상시유계시키는 특성이 있다. 끝으로 컴퓨터 모의실험을 통하여 제안한 방식의 성능을 확인한다.

속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계 (Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer)

  • 현근호;양해원
    • 제어로봇시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF