An Adaptive Fuzzy Backstepping Approach to Robust Tracking Control of a Single-Link Flexible Joint Robot

적응형 퍼지 백스테핑 방식을 이용한 단일축 유연관절 로봇의 강인 제어

  • 김은태 (연세대학교 전기전자공학부) ;
  • 이희진 (국립 한경대학교 정보제어공학과)
  • Published : 2004.07.01

Abstract

This paper presents an adaptive fuzzy backstepping (AFB) controller for a single-link flexible joint robot in the Presence of Parametric uncertainties and external disturbances. Adaptive fuzzy logic systems are used as universal approximators to counteract the model uncertainties coming from robot dynamics and to compensate for the nonlinearities coming from adaptive backstepping method. The approach suggested herein does not require neither an additional supervisory nor a robustifying controller and guarantees that tracking error is uniformly ultimately bounded (UUB) within a sufficiently small residual set. Finally, a simulation result is given to demonstrate the robust tracking performance of proposed design method.

본 논문에서는 적응 퍼지 백스테핑 알고리즘을 이용하여 단일축 유연관절 로봇을 제어하는 새로운 알고리즘을 제안한다. 퍼지시스템은 일반근사기로 사용하여 로봇과 제어기의 비선형성과 불확실성을 상쇄하는 역할을 한다. 제안한 알고리즘은 추가적인 교시 제어기를 필요로 하지 않으며 추적오차를 상시유계시키는 특성이 있다. 끝으로 컴퓨터 모의실험을 통하여 제안한 방식의 성능을 확인한다.

Keywords

References

  1. L. M. Sweet and M. C. Good, 'Redefinition of the robot motion control problem: Effects of plant dynamics, drive system constraints, and user requirements,' in Proc of 23nd IEEE Conf. Decision Control, Las Vegas, pp. 724-730, 1984
  2. M. Spong, 'Modeling and control of elastic joint robots,' J. Dynamic Syst., Meas., Contr., vol. 109, pp. 310-319, Dec. 1987. https://doi.org/10.1115/1.3143860
  3. M. Spong and M. Vidyasagar, Robot Dynamics and Control, Wiley:NY, 1989
  4. R. Lozano and B. Brogliato, 'Adaptive control of robot manipulators with flexible joints,' IEEE Trans. Autom. Control, AC-37, pp. 174-181, 1992 https://doi.org/10.1109/9.121619
  5. P. Seibert and R. Suarez, 'Global stabilization of cascade systems,' Syst. Control Lett., vol 14, pp. 347-352, 1990 https://doi.org/10.1016/0167-6911(90)90056-Z
  6. S. Nicosia and P. Tomei, 'A method to design adaptive controller for flexible joints robots,' in Proc. IEEE Int. Conf. Robotics Automations, Nice, France, pp. 701-706, 1992
  7. B. Brogliato, R. Ortega, and R. Lozano, 'Global tracking controller for flexible joint manipulators: A comparative study,' Automatica, vol. 31, no. 7, pp. 941-956, 1995 https://doi.org/10.1016/0005-1098(94)00172-F
  8. H. A. Malki, D. Misir, D. Feigenspan, and G. Chen, 'Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads,' IEEE Trans. Contr. Sys. Tech., vol. 5, no. 3, pp. 371-378, 1997 https://doi.org/10.1109/87.572133
  9. J. L. Castro and M. Delgado, 'Fuzzy systems with defuzzification are universal approximators,' IEEE Trans. Sys. Man and Cyber., vol. 26, pp. 149-152, 1996 https://doi.org/10.1109/3477.484447
  10. L.X. Wang, 'Fuzzy systems are universal approximators,' in Proc. of IEEE Int. Conf. Fuzzy Syst., San Diego, CA, pp. 1163-1170, 1992 https://doi.org/10.1109/FUZZY.1992.258721
  11. X. Zeng and M. G. Singh, 'Approximation theory of fuzzy systems-MIMO case,' IEEE Trans. Fuzzy Systems, vol. 3, No. 2, pp 219-235, May 1995 https://doi.org/10.1109/91.388175
  12. H. Lee and M. Tomizuka, 'Robust adaptive control using a universal approximator for SISO nonlinear systems,' IEEE Trans. Fuzzy Systems, vol. 8, No. 1, pp 95-106, Feb., 2000 https://doi.org/10.1109/91.824777
  13. C. Kwan and F. Lewis, 'Robust backstepping control of induction motors using neural networks,' IEEE Trans. Neural Networks, vol. 11, no. 5, pp. 1178-1187, Sep., 2000 https://doi.org/10.1109/72.870049
  14. L. X. Wang, 'Stable adaptive fuzzy control of nonlinear systems,' IEEE Transaction on Fuzzy Systems, Vol. 1, pp. 146-155, 1993 https://doi.org/10.1109/91.227383
  15. B. S. Chen, H. J. Uang and C. S. Tseng, 'Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach,' IEEE Trans. Fuzzy Systems, vol. 6, no. 4, pp 538-552, 1998 https://doi.org/10.1109/91.728449
  16. R. Ordonez and K. M. Passino, 'Stable multi-input multi-output adaptive fuzzy/neural control,' IEEE Trans. Fuzzy Systems, vol. 7, no. 3, pp 345-353, Jun., 1999 https://doi.org/10.1109/91.771089
  17. Y. -C. Chang and B. -S. Chen, 'Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: adaptive fuzzy approach,' IEEE Trans. Fuzzy Systems, vol. 8, no. 1, pp 46-66, 2000 https://doi.org/10.1109/91.824768
  18. Y. -C. Chang, 'Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and $H{\infty}$ approaches,' IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 278-292, 2001 https://doi.org/10.1109/91.919249
  19. E. Kim, 'A fuzzy disturbance observer and its application to control,' IEEE Trans. Fuzzy Systems, vol. 10, no. 1, pp. 77-84, Feb., 2002 https://doi.org/10.1109/91.983280
  20. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991