
 

 
1. INTRODUCTION 

 
Many conventional flight control designs assume the 

aircraft dynamics to be linear about some nominal flight 
condition. But this paper deals with the problem of controlling 
an aircraft explicitly considering its nonlinear dynamics. Our 
main tool will be backstepping [4], a Lyapunov based design 
method that has received a lot of attention in the recent years. 
Compared to other nonlinear techniques like feedback 
linearization, backstepping offers a more flexible way of 
dealing the nonlinearities. Using Lyapunov functions, their 
influence on the system can be analyzed and stabilized, and 
thus in a sense, useful nonlinearities can be cancelled or 
dominated by the control signal. Not having to cancel all 
nonlinearities means that the resulting control law may be 
much simpler than if feedback linearization had been used. 
 

In this paper, the application is angle of attack and sideslip 
control. Using inherent characteristics, we will show that 
despite its nonlinear dynamics  the required state of the  
R-UAV  is stabilized around the desired trajectory, regardless 
of the initial condition. 

 
The remainder of the paper is organized as follows- In 

Section 2, a nonlinear model of the Rotary wing Unmanned 
Aerial Vehicle (R-UAV) is described and the dynamic 
equations are transformed into pure-feedback form which is 
crucial to the backstepping design. In Section 3, the 
backstepping control law is derived in detail, and in Section 4 
the control law is implemented using a generic simulation 
model of R-UAV.  
 

 
2. AIRCRAFT MODEL 

 
 The aircraft considered here is a small scale Rotary-Wing 
Unmanned Aerial Vehicle(R-UAV) [1] which has a mass 

of 8.2 Kg. The body fixed axes nonlinear equations of 
motion for an aircraft are given by [8] 
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The gravity components are given by  
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Where ,TV α and β are the velocity, angle of attack and 
sideslip respectively. and are the drag, lift and side 
force given by 
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The objective of the backstepping approach here is that the 

aircraft follows a reference angle of attack refα and roll rate 
and the sideslip refp β should be maintained zero at all time. 

In order to apply the backstepping algorithm to the above 
given system the state equations should be transformed into a 
strict feedback form as given below  
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Where and are the control inputs. 1 2,u u 3u

3. CONTROL DESIGN 
 

The controller for the above mentioned objectives is 
obtained by a generic backstepping approach [2, 3] which 
obviously involves the derivation of the Lyapunov equations. 
 
3.1 Backstepping approach 

Let us consider a generic system which can be described by 
the following equations  

 
( )1 1

2
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Considering the above system let us determine a control 
law that globally stabilizes the system at 1x r= .To have 
further insight , we introduce the deviation from the steady 
state, 1 1x rξ = − , ( )2 2 , ,x f r yξ = + and

( ) ( ) ( )1 1 , ,f r y f r yϕ ξ ξ= + − .This gives us  
 

( )1 1 2ξ ϕ ξ ξ= +               (4) 

2 uξ =                 (5) 
  
We now assume that there exists a maximum slope 
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Equality holds if is not restricted, i.e., when .To 

use this property in our backstepping application we can 
rewrite it as  

r rΩ = R

 
( ) 2

1 1 1aξ ϕ ξ ξ≤               (7) 
 
We now design the actual control law in two steps. 
 
Step 1: 

Let us consider 2ξ as the control input of Equation (4) and 
find a desired stabilizing virtual control law 2

desξ using the 
control lyapunov function (clf) 
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Differentiating with respect to time we get 
 

( )( ) ( )1 1 1 2 1 1 2V aξ ϕ ξ ξ ξ ξ ξ= + ≤ +  
 
Using (7) is made negative definite by selecting  1V
 

2 1 1
des kξ ξ= − 1k a>,   

 
The resulting 1ξ dynamics, ( )1 1k 1ϕ ξ − ξ , lie in the second and 

the fourth quadrants and hence 1ξ is stabilized. 
 
Step 2: 

Continue by introducing the residual 
 

2 2 2 2 1
des k 1ξ ξ ξ ξ ξ= − = +  

 
And rewrite the system dynamics in terms of 1ξ and 1ξ  
 

( )1 1 1 1k 2ξ ϕ ξ ξ ξ= − +             (8) 

( )( )1 1 1 1 1u k k 2ξ ϕ ξ ξ ξ= + − +          (9) 

 
Proceeding in the usual backstepping manner, by adding 

a 2ξ  term to the clf would lead to a control law that cancels 
these components. The control law would thereby require 
exact knowledge of ϕ and consequently f  not only at the 

equilibrium, 1x r= .Add ( )1F ξ as an extra degree of 
freedom .This extension of backstepping is due to [4].Thus 
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Where ( )1F ξ  is a positive definite, radially unbounded 
function, satisfying 
 

( )1 1 0F ξ ξ′ > , 1 0ξ ≠             (10) 
 
Where ( ) ( )1 1F F 1ξ ξ ξ′ = ∂ ∂  

We now aim at finding that will make  negative u 2V
definite. 

( )( )2 0 1 1 1 1 2V k kξ ϕ ξ ξ ξ= − +  

    ( ) ( )( )1 1 1 1F k 2ξ ϕ ξ ξ ξ′+ − +  

    ( )( )( )2 1 1 1 1 2u k kξ ϕ ξ ξ ξ+ + − +  

 
At this stage it is rewarding to make the split 
 
( ) ( )1 1 a 1ϕ ξ ϕ ξ ξ= − +  

 
where ( )1ϕ ξ− is guaranteed to just stay inside the second and 
fourth quadrants. i.e, 
 

( )1 1 0ξ ϕ ξ− ≤  
 

We note that ( )1 1k 1ϕ ξ − ξ  is also restricted to the second 
and fourth quadrants. Combining this with Equation (10) we 
have that 
 

( ) ( )( )1 1 1 1 0F kξ ϕ ξ ξ′ − ≤  
 
also holds. Using these relationships we get 
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We can simplify this expression further 
 

( )0 1 1k k k a= −  

( ) ( )1 1 1F kξ ϕ ξ′ = − − (, )1 0, 0 0> =k F  
 
And the final expression 
 

( ) ( )2 2
2 1 1 1 2 1 2V k k a u kξ ξ ξ≤ − − + +  

 
To make the right hand side negative definite, and the 

closed loop system globally stable, we select the control law 
 

2 2u k ξ= − ,             (11) 2k k> 1

 
Summary: Let us summarize our results. Despite the 
nonlinear nature of the system (4-5), the linear control law 
(11) is globally stabilizing. In terms of the original state 
variables from (3) the control law becomes 
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( ) ( )( )2 2 1 1 ,u k x k x r f r y= − + − + ,       (12) 

1k and are design parameters restricted by 2k
( )2 1 max ,0k k a> >  with a from (6) 

 
3.2 Application toα and β control 
The control law (12) can be applied to angle of attack control 
by substituting 

1x α= , 2x q= ,  2u u=
 
Therefore we get 
 

( )( )2 2 1 refu k q k fαα α= − + − +  

Where ( )( 2
1tan

T
)f p LmVα β α= − + − + mg is a nonlinear 

term involving lift. Similarly the control law (12)can be 
applied to sideslip control by substituting  
 

1x β= , 2x r= − and   3u u= −

we get ( )3 2 1
1 cos sins
T

u k r k gVβ θ φ= − + +  

where ( )( 3
1

T
)f Y mgmVβ β= + is the nonlinear term involving 

the sideforce. Note that does not depend explicitly on the 
side force. 

3u

 
3.3 Roll control 
Controlling the roll rate is straight forward. 

1p u=  
From equation (2) we can assign  

( )1
refu k p p= −  

Where is an arbitrary tuning parameter. k
4. SIMULATION 

 
The derived control law was evaluated on a small scale 

R-UAV such as X-Cell 60 [1].The flight condition was 
assumed to be a level flight with constant forward velocity of 
20 m/sec. The simulation response are shown in Fig.1 
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Fig.1 Angle of attack, Sideslip and Rollrate response for  
reference Angle of attack command. 
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