• Title/Summary/Keyword: Bacillus sp. spore

Search Result 37, Processing Time 0.018 seconds

Probiotic Potential of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju (메주로부터 분리한 토착 Bacillus sp. BCNU 9028의 프로바이오틱스로서 이용 가능성)

  • Shin, Hwa-Jin;Bang, Ji-Hun;Choi, Hye-Jung;Kim, Dong-Wan;Ahn, Cheol-Soo;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spore-forming bacteria are being used as probiotic supplements for human and animal use, due to their low pH stability and ability to survive the gastric barrier. In this study, the BCNU 9028 strain was screened from meju, a Korean fermented soybean food starter. Biochemical and physiological characteristics, as well as 16S rDNA sequence analyses, indicate that this strain belongs to the genus $Bacillus$. $Bacillus$ sp. BCNU 9028 showed a 92% survivability at pH 2.5 and could also withstand 0.3% ox bile. Furthermore, it was postulated that $Bacillus$ sp. BCNU 9028 could prevent biofilm formation and adherence of food-borne pathogens such as $Listeria$ $monocytogenes$, $S.$ $aureus$ and $E.$ $coli$ on the basis of its autoaggregation and coaggregation capacity with food-borne pathogens. It was shown that BCNU 9028 has good abilities to adhere to the intestinal tract from its hydrophobic character (63.3%). The $Bacillus$ sp. BCNU 9028 strain especially elicited antibacterial activity against both Gram-positive and -negative pathogens. These findings suggested that the $Bacillus$ sp. BCNU 9028 strain could be used as a potential probiotic.

Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light (광촉매와 UVA에 의한 실내 부유 미생물(E. coli 및 Bacillus. subtilis sp.) 살균 제거 연구)

  • Yoon, Young H.;Nam, Sook-Hyun;Joo, Jin-Chul;Ahn, Ho-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1204-1210
    • /
    • 2014
  • New control methods are proposed for indoor air quality by removing fine airborne dust-particles. As suspended fine dust-particles contain inorganic dust as well as fine organic bacteria, studies for simultaneous control of these contaminants are required. In this study, photocatalytic disinfection of indoor suspended microorganisms such as E. coli and Bacillus subtilis is performed by three types of photocatalysts with UVA irradiation. The UVA irradiation strength was controlled to the minimum $3{\mu}W/cm^2$, and ZnO, $TiO_2$, and ZnO/Laponite ball were used as the catalysts. The results indicate that E. coli was removed over 80 % after about 2 hours of reaction with UVA and all three types of photocatalysts, whereas only with UVA, around 50 % E. coli removal was obtained. Among the catalysts, ZnO/Laponite composite ball was found to have similar sterilizing capacity to $TiO_2$. However, in case of B. subtilis, which has thick cell wall in its spore state, disinfection was not effective under the low UVA irradiation condition, even with the catalysts. Further studies need to figure out the optimal UVA irradiation ranges as well as photocatalysts doses to control airborne dust, to provide healthy clean air environment.

A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil (한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별)

  • Kim, Ji-Eun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.419-426
    • /
    • 2006
  • A thermophilic microorganism, strain JE 375, which produces a thermostable protease, was isolated from soil and compost in Korea. This gram-positive, rod-shaped, catalase positive, motility positive, and hemolysis ${\beta}$ containing organism was implicated in glucose fermentation, mannitol fermentation, xylose oxidation, aerobic activity and spore formation. The color of the colony was yellowish white. The temperature range for growth at pH 6.5 was between 55 and $70^{\circ}C$, with an optimum growth temperature of $65^{\circ}C$. This result confirmed the strain JE 375 as a thermophilic microorganism. The enzyme was produced aerobically at $65^{\circ}C$ during 20 hr in a medium (pH 6.5) containing 1% trypton. 1% maltose, 0.5% yeast extract and 1% NaCl. The 16S rDNA of strain JE 375 had 97.6% sequence similarity with the 16S rDNA of Bacillus caldoxyloyticus. On the basis of biochemical and physiological properties and phylogenetic analysis, we named the isolated strain as Bacillus sp. JE 375. The thermostable protease from Bacillus sp. JE 375 had been partially purified and characterized. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography as 55 kDa and its optimal temperature was $60^{\circ}C$. The enzyme showed its highest activity at pH 7.5 and was stable from pH 7.0 to 8.0.

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals

  • Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1597-1604
    • /
    • 2012
  • Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

Effect of Chitosan on Shelf Life of Cooked Rice Contaminated Artificially with Bacillus sp (취반시 키토산 첨가가 Bacillus sp.에 오염된 쌀밥의 품질에 미치는 영향)

  • Park, La-Young;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1589-1595
    • /
    • 2007
  • This study was carried out to examine the effect of chitosan on the quality of cooked rice. Sensory quality of cooked rice added with 0.1% and 0.5% chitosan was investigated. Taste, flavor and overall acceptability of cooked rice with 0.1% chitosan solution was similar to cooked rice without chitosan. Quality characteristics of cooked rice artificially inoculated with Bacillus spore (CRB), such as number of viable cell, pH, hardness, cohesiveness and color were investigated and compared with CRB added with 0.1% chitosan (CRCB) during storage at $20^{\circ}C\;and\;30^{\circ}C$ for 3 days. The viable cell number of 0.1% chitosan contained in cooked rice inoculated with Bacillus (CRCB) was lower about $1{\sim}1.5$ log at $20^{\circ}C,\;0.5{\sim}1$ log at $30^{\circ}C$ than that of cooked rice inoculated with Bacillus (CRB). The pH of CRCB did not change during storage at $20^{\circ}C$ for 2 days, but decreased in CRCB and CRB during storage at $30^{\circ}C$. The difference of hardness was not noticeable between CRB and CRCB during storage. Cohesiveness and lightness (L value) of CRCB were higher than those of CRB during storage.

A Thermostable Protease Produced from Bacillus sp. DF 218 (Bacillus sp. DF218이 생산하는 내열성 단백질 분해효소)

  • Lee, Joung-Hee;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.105-110
    • /
    • 2004
  • Microorganism (strain DF 218) producing thermostable pretense was isolated from Korean soil and compost. It was Gram-positive, rod-shaped, aerobic, and spore-forming with yellowish white colony color, Temperature range for growth at pH 6.5 was $30-65^{\circ}C$, with optimum growth at $60^{\circ}C$. pH range for growth at $60^{\circ}C$ was 5-7 with optimum of 6.5, which indicates strain DF 218 to be thermophilic. The 16S rDNA sequence of strain DF 218 had 95% sequence similarity with that of Bacillus flexus. Based on physiological properties and phylogenetic analysis, we proposed the isolated strain as Bacillus sp. DF 218. Pretense was produced aerobically at $60^{\circ}C$ for 32 hr in a medium (pH 6.5) containing 1% each trypton, glucose, and NaCl. Its molecular weight was estimated as 61 kDa, with optimum temperature and pH of $60^{\circ}C$ and 7.5, respectively.

Isolation and Characterization of Bacillus sp. Producing Broad-Spectrum Antibiotics Against Human and Plant Pathogenic Fungi

  • Chen, Na;Jin, Min;Qu, Hong-Mei;Chen, Zhi-Qiang;Chen, Zhao-Li;Qiu, Zhi-Gang;Wang, Xin-Wei;Li, Jun-Wen
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.256-263
    • /
    • 2012
  • A strain of bacterium producing antifungal antibiotic was isolated and identification of the strain was attempted. We could identify the bacterium as being a Bacillus sp., based on morphological observation, physiological characteristics, and 16S rDNA sequence analysis, thus leading us to designate the strain as Bacillus sp. AH-E-1. The strain showed potent antibiotic activity against phytopathogenic and human pathogenic fungi by inducing mycelial distortion and swelling and inhibiting spore germination. The antibiotic metabolite produced by the strain demonstrated excellent thermal and pH (2-11) stability, but was labile to autoclaving. From these results, we could find a broader antifungal activity of Bacillus genus. Isolation and characterization of the active agent produced by the strain are under progress.

Isolation and Characterization of a Protease-Producing Bacterium, Bacillus amyloliquefaciens P27 from Meju as a Probiotic Starter for Fermented Meat Products

  • Lee, Mi-Sun;Lee, Na-Kyoung;Chang, Kyung-Hoon;Choi, Shin-Yang;Song, Chi-Kwang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.804-810
    • /
    • 2010
  • This study was performed to select protease-producing Bacillus sp. as a potential probiotic starter for fermented meat products. In order to isolate protease-producing bacterium from meju, measured the diameter of the clear zone on agar plate (TSA, 1% (w/v) skim milk) and analyzed for intracellular protease activity, then 10 Bacillus-like strains were isolated. Three Bacillus-like strains (P19, P27, and P33) among 10 strains were able to tolerate in acidic condition (TSB, pH 2.5, 2 h incubation). These 3 strains were showed antimicrobial activity against food-borne pathogenic bacteria. These vegetative cells of 3 strains were showed a survival rate of 0.04% to 0.08% under the artificial gastric acidic condition (TSB, pH 2.5 with 1% (w/v) pepsin), but spore-forming cells were 56.29% to 84.77%. Vegetative cells of 3 strains were the least bile-resistant, while spore-forming cells of 3 strains showed higher survival rate more than 76% under artificial bile condition (TSB, 0.1% (w/v) oxgall bile). In these strains, P27 strain was finally selected as a good probiotic strain. P27 strain was tentatively identified as Bacillus amyloliquefaciens by API CHB kit and 16S rDNA sequence analysis. The results of this study suggest that B. amyloliquefaciens P27 can be used as a potential probiotic starter for fermented meat product.

Sedimentation and EPS Production by the Change of Dissolved Oxygen Concentration for the Aeration Tank to treat Wastewater with Bacillus sp. (바실러스 미생물을 이용한 하수처리에서 포기조의 DO농도 변화에 따른 EPS 물질생성과 슬러지 침강성에 관한 연구)

  • Lee, Sang-Ho;Son, Han-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.627-631
    • /
    • 2007
  • The factors affecting on sludge sedimentation are reported as F/M ratio, ingredient, composition of influent substrate, dissolved oxygen concentration, temperature, pH, filamentous bacteria and SRT. Aeration tank applying Bacillus sp. has an important role for maintaining the dominant microorganism species to make steady progress for spore growth affecting sedimentation. This research aims to investigate the affecting factor for the sedimentation in B3 system and RABC system with aeration tank applying tapered aeration. Extracellular polymeric substances(EPS), protein and carbohydrate can be produced for the extreme condition, that is down to 0.2 mg/L of dissolved oxygen in the aeration tank. This research found out the relation between the sedimentation and the EPS production, especially the ratio of protein/carbohydrate. The spore of Bacillus sp. was formed at the low DO then microorganisms produced EPS. The results showed that the production of EPS was 109.95 mgEPS/gSS at 1.6 mg/L of DO, however it was 131.77 mgEPS/gSS at 0.5 mg/L of DO. The sedimentation was affected by protein content in EPS and the ratio of protein and carbohydrate. The settleability of sludge was not affected by the ratio of protein/carbohydrate in B3 process, meanwhile settleability was affected by the ratio of it in RABC process, respectively.

  • PDF