Browse > Article
http://dx.doi.org/10.4014/jmb.1204.04013

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals  

Mongkolthanaruk, Wiyada (Department of Microbiology, Faculty of Science, Khon Kaen University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1597-1604 More about this Journal
Abstract
Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.
Keywords
Quorum sensing; quorum quenching; cyclic lipopeptides; polyketides; bacteriocins;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514-525.   DOI   ScienceOn
2 Shank, E. A. and R. Kolter. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14: 741-747.   DOI   ScienceOn
3 Tam, N. K., N. Q. Uyen, H. A. Hong, L. H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700.   DOI   ScienceOn
4 Uroz, S., S. R. Chhabra, M. Camara, P. Williams, P. Oger, and Y. Dessaux. 2005. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322.   DOI   ScienceOn
5 Velho, R. V., D. G. Caldas, L. F. Medina, S. M. Tsai, and A. Brandelli. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52: 660-666.   DOI   ScienceOn
6 Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
7 Xu, D. and J. Cote. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53: 695-704.   DOI   ScienceOn
8 Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control of plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572.   DOI   ScienceOn
9 Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.   DOI   ScienceOn
10 Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. Donk. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptides. Nat. Chem. Biol. 7: 78-80.   DOI   ScienceOn
11 Park, S. Y., S. J. Lee, T. K. Oh, J. W. Oh, B. T. Koo, D. Y. Yum, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550.   DOI   ScienceOn
12 Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
13 Ongena, M., J. Emmanuel, A. Adam, M. Paquot, A. Brans, B. Joris, et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.   DOI   ScienceOn
14 Park, S. J., S. Y. Park, C. M. Ryu, S. H. Park, and J. K. Lee. 2008. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J. Microbiol. Biotechnol. 18: 1518-1521.
15 Pelczar, P. L. and P. Setlow. 2008. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J. Bacteriol. 190: 5635-5641.   DOI   ScienceOn
16 Pottathil, M., A. Jung, and B. A. Lazazzera. 2008. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. J. Bacteriol. 190: 4095-4099.   DOI   ScienceOn
17 Raaijmakers, J. M., I. Bruijn, O. Nybroe, and M. Ongena. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.
18 Reiss, R., J. Ihssen, and L. Thöny-Meyer. 2011. Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9   DOI   ScienceOn
19 Roche, D. M., J. T. Byers, D. S. Smith, F. G. Glansdrop, D. R. Spring, and M. Welch. 2004. Communication blackout? Do Nacylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150: 2023-2028.   DOI   ScienceOn
20 Romero, D., A. Vicente, R. Rakotoaly, S. Dufour, J. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440.   DOI   ScienceOn
21 Ryan, R. P. and J. M. Dow. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154: 1845-1858.   DOI   ScienceOn
22 Schneider, K., X. C. Chen, J. Vater, P. Franke, J. Nicholson, R. Borriss, and R. D. Süssmuth. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423.   DOI   ScienceOn
23 Setlow, B., A. E. Cowan, and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637-648.   DOI   ScienceOn
24 Kinsinger, R. F., M. C. Shirk, and R. Fall. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185: 5627-5631.   DOI   ScienceOn
25 Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596.   DOI   ScienceOn
26 Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24: 895-904.   DOI   ScienceOn
27 Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266.   DOI   ScienceOn
28 Lee, H. and H. Y. Kim. 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol. 21: 229-235.
29 Lopez, D., H. Vlamakis, R. Losick, and R. Kolter. 2009. Paracrine signaling in a bacterium. Genes Dev. 23: 1631-1638.   DOI   ScienceOn
30 Li, H., X. Wang, M. Han, Z. Zhao, M. Wang, Q. Tang, et al. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afri. J. Biotechnol. 11: 231-242.
31 Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.   DOI   ScienceOn
32 Malone, C. L., B. R. Boles, and A. R. Horswill. 2007. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB Mini-Intein. Appl. Environ. Microbiol. 73: 6036-6044.   DOI   ScienceOn
33 Mayville, P., G. Ji, R. Beavis, H. Yang, M. Goger, R. P. Novick, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 1218-1223.   DOI   ScienceOn
34 McPherson, D. C., H. Kim, M. Hahn, R. Wang, P. Grabowski, P. Eichenberger, and A. Driks. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187: 8278-8290.   DOI   ScienceOn
35 Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526-530.   DOI   ScienceOn
36 Moldenhauer, J., D. C. G. Gotz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Sussmuth, et al. 2010. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: Direct evidence for ${\beta}$,${\gamma}$ dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49: 1465-1467.   DOI   ScienceOn
37 Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171.   DOI   ScienceOn
38 Mongkolthanaruk, W., G. R. Cooper, J. S. P. Mawer, R. N. Allan, and A. Moir. 2011. Effect of amino acid substitutions in the GerAA protein on the function of the alanine responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 193: 2268-2275.   DOI   ScienceOn
39 Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416.   DOI   ScienceOn
40 Czajkowski, R. and S. Jafra. 2009. Quenching of acylhomoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56: 1-16.
41 Fuchs, S. W., T. W. Jaskolla, S. Bochmann, P. Kotter, T. Wichelhaus, M. Karas, et al. 2011. Entianin, a novel subtilinlike lantibiotic from Bacillus subtilis subsp. spizizenii DSM15029 with high antimicrobial activity. Appl. Environ. Microbiol. 77: 1698-1707.   DOI   ScienceOn
42 Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria: Acyl-homoserine lactone signalling. Nat. Rev. 3: 685-695.   DOI   ScienceOn
43 Griffiths, K., J. Zhang, A. E. Cowan, J. Yu, and P. Setlow. 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81: 1061-1077.   DOI   ScienceOn
44 Gould, G. W. 1969. Germination, pp. 397-444. In G. W. Gould and A. Hurst (eds.). The bacterial spore, Academic Press, London, England.
45 Guez, J. S., C. H. Muller, P. M. Danze, J. Buchs, and P. Jacques. 2008. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134: 121-126.   DOI   ScienceOn
46 Hofemeister, J., B. Conrad, B. Adler, B. Hofemeister, J. Feesche, N. Kucheryava, et al. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics 272: 363-378.   DOI   ScienceOn
47 He, H., L. A. Silo-Suh, J. Clardy, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502.   DOI   ScienceOn
48 Herzner, A. M., J. Dischinger, C. Szekat, M. Josten, S. Schmitz, A. Yakeleba, et al. 2011. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6(7): e22389.   DOI
49 Higgins, D. and J. Dworkin. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131-148.   DOI   ScienceOn
50 Igarashi, T. and P. Setlow. 2006. Transcription of the Bacillus subtilis gerK operon, which encodes a spore germinant receptor, and comparison with that of operons encoding other germinant receptors. J. Bacteriol. 188: 4131-4136.   DOI   ScienceOn
51 Inglesby, T. V., T. O'Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, et al. 2002. Anthrax as a Biological Weapon. JAMA 287: 2236-2252.   DOI   ScienceOn
52 Kanhere, A. and M. Vingron. 2009. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9: 9   DOI   ScienceOn
53 Kearns, D. B., F. Chu, R. Rudner, and R. Losick. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55: 739-749.
54 Abriouel, H., C. Franz, N. B. Omar, and A. Galvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.   DOI   ScienceOn
55 Brötz, H., G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154-160.
56 Amara, N., B. P. Krom, G. F. Kaufmann, and M. M. Meijler. 2011. Macromolecular inhibition of quorum sensing: Enzymes, antibodies and beyond. Chem. Rev. 111: 195-208.   DOI   ScienceOn
57 Ansaldi, M., D. Marolt, T. Stebe, I. Mandic-Mulec, and D. Dubnau. 2002. Specific activation of the Bacillus quorumsensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 1561-1573.   DOI   ScienceOn
58 Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319.   DOI   ScienceOn
59 Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.   DOI   ScienceOn
60 Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol. 188: 4024-4036.   DOI   ScienceOn
61 Christiaen, S., G. Brackman, H. J. Nelis, and T. Coenye. 2011. Isolation and identification of quorum quenching bacteria from environmental samples. J. Microbiol. Methods 87: 213-219.   DOI   ScienceOn
62 Cooper, G. R. and A. Moir. 2011. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267.   DOI   ScienceOn
63 Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220.   DOI   ScienceOn