DOI QR코드

DOI QR Code

Isolation and Characterization of Bacillus sp. Producing Broad-Spectrum Antibiotics Against Human and Plant Pathogenic Fungi

  • Chen, Na (College of Chemical Engineering and Technology, Tianjin University) ;
  • Jin, Min (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety) ;
  • Qu, Hong-Mei (College of Chemical Engineering and Technology, Tianjin University) ;
  • Chen, Zhi-Qiang (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety) ;
  • Chen, Zhao-Li (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety) ;
  • Qiu, Zhi-Gang (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety) ;
  • Wang, Xin-Wei (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety) ;
  • Li, Jun-Wen (Department of Environment and Health, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety)
  • Received : 2011.07.12
  • Accepted : 2011.10.18
  • Published : 2012.02.28

Abstract

A strain of bacterium producing antifungal antibiotic was isolated and identification of the strain was attempted. We could identify the bacterium as being a Bacillus sp., based on morphological observation, physiological characteristics, and 16S rDNA sequence analysis, thus leading us to designate the strain as Bacillus sp. AH-E-1. The strain showed potent antibiotic activity against phytopathogenic and human pathogenic fungi by inducing mycelial distortion and swelling and inhibiting spore germination. The antibiotic metabolite produced by the strain demonstrated excellent thermal and pH (2-11) stability, but was labile to autoclaving. From these results, we could find a broader antifungal activity of Bacillus genus. Isolation and characterization of the active agent produced by the strain are under progress.

Keywords

References

  1. Altindag, M., M. Sahin, A. Esitken, S. Ercisli, M. Guleryuz, M. F. Donmez, and F. Sahin. 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 38: 369-372. https://doi.org/10.1016/j.biocontrol.2006.04.015
  2. Arrebola, E., D. Sivakumar, and L. Korsten. 2010. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control 53: 122-128. https://doi.org/10.1016/j.biocontrol.2009.11.010
  3. Benitez, L. B., R. V. Velho, M. P. Lisboa, L. F. Medina, and A. Brandelli. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791-797. https://doi.org/10.1007/s12275-010-0164-0
  4. Bottone, E. J. and R. W. Peluso. 2003. Production by Bacillus pumilus (Msh) of an antifungal compound that is active against Mucoraceae and Aspergillus species: Preliminary report. J. Med. Microbiol. 52: 69-74. https://doi.org/10.1099/jmm.0.04935-0
  5. Brenner, D. J., N. R. Krieg, G. M. Garrity, J. T. Staley, D. R. Boone, P. Vos, et al. 2005. Bergey's Manual of Systematic Bacteriology, Vol. 2.
  6. Chang, W. T., Y. C. Chen, and C. L. Jao. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 98: 1224-1230. https://doi.org/10.1016/j.biortech.2006.05.005
  7. Choi, G. J., J. C. Kim, K. S. Jang, and D. H. Lee. 2007. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. J. Microbiol. Biotechnol. 17: 2071-2075.
  8. Dong, X. Z. and M. Y. Cai. 2001. Identical Manual of Common Systematic Bacteriology. Science Press, Beijing.
  9. Jiang, Y., X. Zhu, and Y. Li. 2001. Postharvest control of Litchi fruit rot by Bacillus subtilis. Lebenson. Wiss. Technol. 34: 430-436. https://doi.org/10.1006/fstl.2001.0758
  10. Johann, S., N. P. Sa, L. A. R. S. Lima, P. S. Cisalpino, B. B. Cota, T. Alves, et al. 2010. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis. Ann. Clin. Microbiol. Antimicrob. 9: 30. https://doi.org/10.1186/1476-0711-9-30
  11. Kalia, V. C., T. Mukherjee, A. Bhushan, J. Joshi, P. Shankar, and N. Huma. 2011. Analysis of the unexplored features of rrs (16s rDNA) of the genus Clostridium. BMC Genomics 12: 18. https://doi.org/10.1186/1471-2164-12-18
  12. Kavitha, S., S. Senthilkumar, S. Gnanamanickam, M. Inayathullah, and R. Jayakumar. 2005. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain Vlb16. Process Biochem. 40: 3236-3243. https://doi.org/10.1016/j.procbio.2005.03.060
  13. Kumar, A., P. Saini, and J. N. Shrivastava. 2009. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J. Exp. Biol. 47: 57-62.
  14. Lee, J. P., S. W. Lee, C. S. Kim, J. H. Son, J. H. Song, K. Y. Lee, et al. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  15. Leelasuphakul, W., P. Sivanunsakul, and S. Phongpaichit. 2006. Purification, characterization and synergistic activity of [beta]- 1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microbial Technol. 38: 990-997. https://doi.org/10.1016/j.enzmictec.2005.08.030
  16. Li, J., Q. Yang, L. Zhao, S. Zhang, Y. Wang, and X. Zhao. 2009. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B 10: 264-272. https://doi.org/10.1631/jzus.B0820341
  17. Lind, H., H. Jonsson, and J. Schnurer. 2005. Antifungal effect of dairy propionibacteria-contribution of organic acids. Int. J. Food Microbiol. 98: 157-165. https://doi.org/10.1016/j.ijfoodmicro.2004.05.020
  18. Liu, B., L. Huang, H. Buchenauer, and Z. Kang. 2010. Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pest. Biochem. Physiol. 98: 305-311. https://doi.org/10.1016/j.pestbp.2010.07.001
  19. Morita, M., Y. Tanji, Y. Orito, K. Mizoguchi, A. Soejima, and H. Unno. 2001. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gramnegative bacteria. FEBS Lett. 500: 56-59. https://doi.org/10.1016/S0014-5793(01)02587-X
  20. Neofytos, D., D. Horn, E. Anaissie, W. Steinbach, A. Olyaei, J. Fishman, et al. 2009. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: Analysis of multicenter prospective antifungal therapy (PATH) alliance registry. Clin. Infect. Dis. 48: 265-273. https://doi.org/10.1086/595846
  21. Porwal, S., S. Lal, S. Cheema, and V. C. Kalia. 2009. Phylogeny in aid of the present and novel microbial lineages: Diversity in Bacillus. PLoS One 4: e4438. https://doi.org/10.1371/journal.pone.0004438
  22. Rabanal, R. M., A. Arias, B. Prado, M. Hernandez-Perez, and C. C. Sanchez-Mateo. 2002. Antimicrobial studies on three species of Hypericum from the Canary Islands. J. Ethnopharmacol. 81: 287-292. https://doi.org/10.1016/S0378-8741(02)00083-1
  23. San-Lang, W., I. L. Shih, C. H. Wang, K. C. Tseng, W. T. Chang, Y. K. Twu, J. J. Ro, and C. L. Wang. 2002. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme Microbial Technol. 31: 321-328. https://doi.org/10.1016/S0141-0229(02)00130-8
  24. Singh, N. and D. L. Paterson. 2005. Aspergillus infections in transplant recipients. Clin. Microbiol. Rev. 18: 44-69. https://doi.org/10.1128/CMR.18.1.44-69.2005
  25. Spanakis, E. K., G. Aperis, and E. Mylonakis. 2006. New agents for the treatment of fungal infections: Clinical efficacy and gaps in coverage. Clin. Infect. Dis. 43: 1060-1068. https://doi.org/10.1086/507891
  26. Voulgari, K., M. Hatzikamari, A. Delepoglou, P. Georgakopoulos, E. Litopoulou-Tzanetaki, and N. Tzanetakis. 2010. Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Control 21: 136-142. https://doi.org/10.1016/j.foodcont.2009.04.007
  27. Wakayama, S., F. Ishikawa, and K. Oishi. 1984. Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob. Agents Chemother. 26: 939. https://doi.org/10.1128/AAC.26.6.939
  28. Williams, J. H., T. D. Phillips, P. E. Jolly, J. K. Stiles, C. M. Jolly, and D. Aggarwal. 2004. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80: 1106- 1122. https://doi.org/10.1093/ajcn/80.5.1106
  29. Yenjit, P., M. Issarakraisila, W. Intana, and K. Chantrapromma. 2010. Fungicidal activity of compounds extracted from the pericarp of Areca catechu against Colletotrichum gloeosporioides in vitro and in mango fruit. Postharvest Biol. Technol. 55: 129- https://doi.org/10.1016/j.postharvbio.2009.09.003
  30. Zhang, B., C. Xie, and X. Yang. 2008. A novel small antifungal peptide from Bacillus strain B-Tl2 Isolated from tobacco stems. Peptides 29: 350-355. https://doi.org/10.1016/j.peptides.2007.11.024

Cited by

  1. In-Vitro Application of a Qatari Burkholderia cepacia strain (QBC03) in the Biocontrol of Mycotoxigenic Fungi and in the Reduction of Ochratoxin A biosynthesis by Aspergillus carbonarius vol.11, pp.12, 2012, https://doi.org/10.3390/toxins11120700
  2. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review vol.26, pp.11, 2012, https://doi.org/10.3390/molecules26113438