• Title/Summary/Keyword: BE-algebra

Search Result 653, Processing Time 0.027 seconds

A note on derivations of banach algebras

  • Kim, Gwang-Hui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.367-372
    • /
    • 1995
  • In 1955 Singer and Wermer [12] proved that every bounded derivation on a commutative Banach algebra maps into its radical. They conjectured that the continuity of the derivation in their theorm can be removed. In 1988 Thomas [13] proved their conjecture ; Every derivation on a commutative Banach algebra maps into its radical. For noncommutative versions, in 1984 B. Yood [15] proved that the continuous derivations on Banach algebras satisfing [D(a),b] $\in$ Rad(A) for all a, b $\in$ A have the radical range, where [a,b] will be denote the commutator ab-ba. In 1990 M.Bresar and J.Vukman [1] have generlized Yood's result, that is, the continuous linear Jordan derivation on Banach algebra that satisfies [D(a),a] $\in$ Rad(A) for all a $\in$ A has the radical range. In next year Mathieu and Murphy [5] proved that every bounded centralizing derivation on Banach algebras has its image in the radical. Mathieu and Runde [6] removed the boundedness of that.

  • PDF

ON 2-GENERATING INDEX OF FINITE DIMENSIONAL LEFT-SYMMETRIC ALGEBRAS

  • Yang, Xiaomei;Zhu, Fuhai
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1537-1556
    • /
    • 2017
  • In this paper, we introduce the notion of generating index ${\mathcal{I}}_1(A)$ (2-generating index ${\mathcal{I}}_2(A)$, resp.) of a left-symmetric algebra A, which is the maximum of the dimensions of the subalgebras generated by any element (any two elements, resp.). We give a classification of left-symmetric algebras with ${\mathcal{I}}_1(A)=1$ and ${\mathcal{I}}_2(A)=2$, 3 resp., and show that all such algebras can be constructed by linear and bilinear functions. Such algebras can be regarded as a generalization of those relating to the integrable (generalized) Burgers equation.

New Learning Environment of Linear Algebra in Korea

  • Lee Sang-Gu;Han Yoonmee
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.59-68
    • /
    • 2005
  • We are introducing a new learning environment for linear algebra at Sungkyunkwan University, and this is changing our teaching methods. Korea's e-Campus Vision 2007 is a program begun in 2003, to equip lecture rooms with projection equipment, View cam, tablet PC and internet D-base. Now our linear algebra classes at Sungkyunkwan University can be taught in a modem learning environment. Lectures can easily being recorded and students can review them right after class. At Sungkyunkwan University almost $100\%$ of all large and medium size lecture rooms have been remodeled by Mar. 2005 and are in use. We introduce this system in detail and how this learning environment changed our teaching method. Analysis of the positive effect will be added.

  • PDF

A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

  • KIM, SEGYEONG;PARK, JONG-YOULL
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.399-404
    • /
    • 2005
  • Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let $M^p$ be the sub-algebra of M generated by $x^p$, $x{\in}M$. Eggert[3] conjectures that $dim_kM{\geq}pdim_kM^p$. In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,\;X_2,\;{\cdots},\;X_t]$ is a polynomial ring with indeterminates $X_1,\;X_2,\;{\cdots},\;X_t$ over k and $R^+$ is the maximal ideal of R generated by $X_1,\;X_2,{\cdots},\;X_t$ and I is a monomial ideal of R containing $X_1^{n_1+1},\;X_2^{n_2+1},\;{\cdots},\;X_t^{n_t+1}$ ($n_i{\geq}0$ for all i).

  • PDF

BOUNDARIES FOR AN ALGEBRA OF BOUNDED HOLOMORPHIC FUNCTIONS

  • Moraes, L.A.;Grados, L.-Romero
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.231-242
    • /
    • 2004
  • Let $A_b(B_E)$ be the Banach algebra of all complex valued bounded continuous functions on the closed unit ball $B_E$ of a complex Banach space E, and holomorphic in the interior of $B_E$, endowed with the sup norm. We present some sufficient conditions for a set to be a boundary for $A_b(B_E)$ in case E belongs to a class of Banach spaces that includes the pre-dual of a Lorentz sequence space studied by Gowers in [6]. We also prove the non-existence of the Shilov boundary for $A_b(B_E)$ and give some examples of boundaries.

CONSTRUCTIONS OF SEGAL ALGEBRAS IN L1(G) OF LCA GROUPS G IN WHICH A GENERALIZED POISSON SUMMATION FORMULA HOLDS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.367-377
    • /
    • 2022
  • Let G be a non-discrete locally compact abelian group, and 𝜇 be a transformable and translation bounded Radon measure on G. In this paper, we construct a Segal algebra S𝜇(G) in L1(G) such that the generalized Poisson summation formula for 𝜇 holds for all f ∈ S𝜇(G), for all x ∈ G. For the definitions of transformable and translation bounded Radon measures and the generalized Poisson summation formula, we refer to L. Argabright and J. Gil de Lamadrid's monograph in 1974.

The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions

  • Shokri, Abbas Ali;Shokri, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.189-195
    • /
    • 2014
  • Let X be a compact metric space, B be a unital commutative Banach algebra and ${\alpha}{\in}(0,1]$. In this paper, we first define the vector-valued (B-valued) ${\alpha}$-Lipschitz operator algebra $Lip_{\alpha}$ (X, B) and then study its structure and characterize of its maximal ideal space.

ON THE (B, N)-CONSTRUCTION

  • Song, Young-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.159-165
    • /
    • 1997
  • In this paper, k will denote an arbitrary field. If m, n are natural numbers, then $M_{m \times n}(k)$ will denote the set of all $m \times n$ matrices with entries in k. Every k-algebras will be assumed to contain a (multiplicative) identity $1 \neq 0$. A k-subspace $R_0$ of a k-algebra R will be called a k-subalgebra of R if $R_0$ is closed under multiplication from R and $R_0$ contains the identity of R. We will assume all k-algebra homomorphisms take the identity to identity.

  • PDF

GROUND STATES OF A COVARIANT SEMIGROUP C-ALGEBRA

  • Jang, Sun Young;Ahn, Jieun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Let P ⋊ ℕx be a semidirect product of an additive semigroup P = {0, 2, 3, ⋯ } by a multiplicative positive natural numbers semigroup ℕx. We consider a covariant semigroup C-algebra 𝓣(P ⋊ ℕx) of the semigroup P ⋊ ℕx. We obtain the condition that a state on 𝓣(P ⋊ ℕx) can be a ground state of the natural C-dynamical system (𝓣(P ⋊ ℕx), ℝ, σ).