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GROUND STATES OF A COVARIANT SEMIGROUP
C*-ALGEBRA

SUN YOUNG JANG* AND JIEUN AHN**

ABSTRACT. Let P x N* be a semidirect product of an additive
semigroup P = {0,2,3,---} by a multiplicative positive natural
numbers semigroup N*. We consider a covariant semigroup C*-
algebra T (PxN*) of the semigroup PxN*. We obtain the condition
that a state on 7 (P x N*) can be a ground state of the natural C*-
dynamical system (7 (P x N*),R, o).

1. Introduction

The C*-dynamical system is a mathematical model of a quantumn
system. In the basic idea behind modeling quantum systems using a
C*—algebra, the observables in the quantumn system correspond to self
adjoint elements of a C*—algebra A and the states of the quantum
system correspond to states on A. When the system is in a state ¢, the
expected value of an observable a is given as ¢(a). The time evolution
of a quantum system is explained by an action « : R — Aut(A), in the
sense that if the system is in state ¢ at initial time ¢,, then at time ¢,
+t the system is in state ¢ o ay.

The theory of KMS states gives a mathematical formalism for de-
scribing the state ¢ of the system when it is in equilibrium [3], [4]. The
KMS condition was originated as a characterization of Gibbs equilib-
rium states in quantum statistical mechanics and the condition for finite
systems thoroughly characterizes the Gibbs states. This coincidence be-
tween KMS and Gibbs states appears to persist in many models after
the thermodynamic limit. Thus if a thermodynamic system is described
by a C*-dynamical system (A, 7) and the Gibbs formalism is considered,
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then it is natural to interpret the set Kz of (7, 3)-KMS states as the set
of equilibrium states at the inverse temperature .

Recently there are very interesting results on the KMS states of C*-
dynamical systems of C*-algebras generated by isometries [7], [8], [9],
[12], [14], [16], and [17]. Sometimes the uniqueness property of C*-
algebras generated by isometries is a strong tool in computing KMS
states on them. The uniqueness property of C*-algebras generated by
isometries is the generalization of Coburn’s well known theorem, which
asserted that the C*-algebra generated by a non-unitary isometry on
a separable infinite dimensional Hilbert space does not depend on the
particular choice of the isometry. There are lots of significant results on
it [5], [6], [7], [18], [19], and [20]. It is known that the Toeplitz-Cuntz
algebra TO,, has KMS states at every inverse temperature 8 > logn,
but only the one with § = logn factors through a state of @,. Cuntz
introduced a C*-algebra Oy generated by an isometric representation
of the semidirect product N x N* of the additive semigroup N by the
natural action of the multiplicative semigroup N* [7]. He proved that
Oy is simple and there exists a unique KMS state at the inverse tem-
perature 1. He also showed that Qu is closely related to other very
interesting C*-algebras, such as the Bunce-Deddens algebras and Hecke
C*-algebra of Bost and Connes [2]. In [16], [17] Laca and Raeburn inves-
tigated the structure of the universal semigroup C*-algebra C(N x N*)
of covariant isometric representations on N x N*. They showed that
the semigroup C*-algebra C*(N x N*) have interesting properties in the
virtue of [10], [11], and [15]. In particular they showed that KMS states
for the natural dynamic of C(N x N*) have phase transitions [17]. If
the inverse temperature is co, we have a specific state called by a ground
state. Ground states can be described as the zero temperature limits of
KMS states.

We consider the semidirect product P x N* of the additive semigroup
P = {0,2,3,---} by the multiplicative semigroup N*. The semigroup
P =1{0,2,3,---} is the generating subsemigroup of the integer group Z.
Even though (Z, N) is the typical model of a quasi-lattice ordered group,
the order structure of (Z,P) with the positive cone P is not a quasi-
lattice ordered group. The author showed that the reduced semigroup
C*-algebra C_,(P) is isomorphic to the classical Toeplitz algebra 7 (N)
by using Coburn’s result [13]. We see that ( Q x Q% ,P »x N*) is not
a quasi-lattice ordered group but we can define a covariant isometric
representation on P x N* where Q x Q7 is the semidirect product of the
additive rationals Q by the multiplicative positive rationals Q7 . From



Ground states of a covariant semigroup C*-algebra 341

the structure of a covariant semigroup C*-algebra T (P x N*), we obtain
conditions for the existence of the ground state on the natural dynamical
system of a covariant semigroup C*-algebra T (P x N*).

2. A covariant semigroup C*-algebra 7 (P x N*)

Let Q x Q% denote the semidirect product of the additive rationals Q
by the multiplicative positive rationals Q7 , where the group operation
and the inverse element are given by

(r,x)(s,y) = (r +xs, xy) for r,s € Q and z,y € Q7

(r,x) b= (—z7tr, 27 for r € Q and z € Q7.
Let P ={0,2,3,---} be a semigroup of Z. Then the semidirect product
P x N* is the subsemigroup of Q x Q.

PROPOSITION 2.1. (Q x Q7% ,P xN*) is a partially ordered group and
the generators (2,1),(3,1), and {(0,p) : p is a prime number} satisfy
the relations

(pr)(Q, 1) = (2a 1)p(0’p), (07p>(3> 1) = (37 1)p(0’p)’ and (O,p)(o, Q) = (07 Q)(pr)

for all prime numbers p and q.

Proof. Since (P x N*) N (P x N¥)~1 = {(0,1)}, the subsemigroup
P > N* induces a left-invariant partial order on Q x Q% as follows : for
(r,z) and (s,y) in Q x Q1

(r,x) < (s,y) & (r,2) ' (s,y) € PxN¥

(2.1) & ol (s—r)€Pand x 'y € NX.

Suppose that G is a group containing elements w and {v, : p is
a prime number} satisfying the relations

vpu = uPv, and vpvy = VyUp.

Since Q7 is the free abelian group generated by prime numbers and
vp commutes with v,, the map p — v, extends to a homomorphism
v:Q% — G.Let P = {p: pisaprime number in Q* }. Consider an inclu-
sion map ¢ : P — Q% by p — p' and amap f : P — G defined by p — v,.
Define v : Q% — G by v(1) = e and v(p‘{1 .- -p%") = f(p1)51 ---f(pn)‘sn
for a nonempty reduced word p‘fl e pfl“.
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We can see v is a well-defined homomorphism such that v o7 = f.
Moreover v is unique because if g : Q% — G is a homomorphism such
that goi = f, then

6 n — > - n
g -0y = goi(p) - goi(py)’

= f(p)™ - (o)

)
So we have that ¢ = v. Since Z is free abelain, for each n € N* (%Z, +)
is a free abelian group. So we define a homomorphism ¢, : 1Z — G by
k — v 'uFv, for each n € NX and these combine to glve a Well define
homomorphism ¢ : Q = Un}lZ — G by £ == on(k) for £ o, E € Q where
m,n € N*, because

k l
P(=+—) = v;#lukarnl Unm
n o m
= (v;,ﬁukmvnm)(v 1u"lvnm)
k l
= ¢(ﬁ)¢(E)'
Now the first relation extends to v,u* = u"*v, and it follows easily

that v and ¢ combine to give a homomorphism F : Q x Q% — G of the
semidirect product Q x Q% into G by (%,x) — (b(%)vx. In more detail
for (%,2) = (%,1)(0,2) € Q x Q%

k k
F(~,z) = F(=, 1)F(0,2) = vy 'u*v,0, and
n n
k1 ko _
F((avxl)(%7$2)) = Un11n2uk1n2unlxlk2'Unlnzvl‘lxz
= ( 1 k1n2)(u(n1x1)k2vn1$1)Unzwz
= ( )(Umzlukz)vmmz
= ( 1uk Un1)vx1 (U 1uk 0"2)2}952

k1 ko
= F(2,2)F(22, 29).
(o e)F(E )

We see that the group Qx Q% is generated by elements (1, 1) and {(0, p) :
p is a prime number} which satisfy the relations

(0,p)(1,1) = (1,1)P(0,p) and (0,p)(0,¢q) = (0,¢)(0,p)
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for all prime numbers p,q and this is a presentation of Q x Q7% in
[17]. We shall consider the unital subsemigroup P x N* of Q x Q%
interpreted in the category of monoids where P = {0,2,3,4,5,---}.
Since (2,1)71(3,1) = (1,1), P x N* can generate Q x Q%. Since the
semigroup P is generated by the elements 2 and 3, P x N*is gener-
ated by the elements (2,1), (3,1), and {(0,p) : p is a prime num-
ber} which satisfy the relations (0,p)(2,1) = (2,1)?(0,p) , (0,p)(3,1) =
(3,1)P(0,p), and (0,p)(0,q) = (0,¢)(0,p) for all prime numbers p,q. [

If (r,x), (s,y) € P x N* have common upper bounds in (Q x Q% ,P x
N*), we will denote the smallest one among common upper bounds of
(r,x) and (s,y) by (r,2)U(s,y) in the usual order in Qx Q% . Even though
the semigroup P x N* gives a partial order on the semi-direct product
group Q= Q7% by (2.1), but (QxQ%, PxN*) is not a quasi-lattice ordered
group. However we define a covariant isometric representation on P x N*
in the similiar way of Nica’s covariant isometric representation [1].

Now we construct the C*-algebra T (P x N*) generated by an iso-
metric representation of P x N*. First, we introduce the isometric rep-
resentation of a discrete semigroup M. Let M denote a semigroup with
unit e and B be a unital C*-algebra. A map W : M — B,x — W,
is called an isometric homomorphism if W, = 1, W, is an isometry
and W, = W, W, for all z,y € M. If B is the *-algebra B(H) of all
bounded linear operators of a non-zero Hilbert space H, we call (H, W)
an isometric representation of M.

Nica [19] introduced the covariant isometric representation of a quasi-
lattice ordered group as follows: for a quasi-lattice ordered group M, an
isometric representation V' : M — B(H) is Nica covariant if

ety VavyVavy if aVy <oo

where x V y is the least common upper bound of x and y in M. It is
known that Nica’s covariance is a very suitable isometric representation
to explain the uniqueness property of C*-algebra generated by isometric
representations. The motivation of the condition of the covariant isomet-
ric representation is the range projections of the left regular isometric
representation of a left cancellative semigroup M. The left regular iso-
metric representation on the discrete and left cancellative semigroup M
is given by

Ln0n = Opn  for m,n € M,
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where {6, : n € M} is the canonical orthonormal basis of £2(M). Even
though (Q x Q% , P x N*) is not a quasi-lattice ordered group, we can
define the covariant isometric representaion of P x N* in the sence of
Nica’s covariant isometric representation.

A isometric representation W : PxN* — B(H) of PxN* on a Hilbert
space H is covariant if it satisfies

W(m,a)wz(m,a)w(nvb)w?n:b)

_]o if (m+aP)N(n+bP)=0,
W(mva)@(”’b)wz(m,a)w(n,b) if (m + CLP) n (’I’L + bP) 7é 0.

We use the notation Wy, = 0 when (m,a) U (n,b) = oo, thus we can
always have

W(m,a) W?m,a

)W(n,b)W?n,b) = W(m,a)@(n,b) ?m,a)@,l(n,b)

for all (m,a), (n,b) € P x N*. The covariant condition leads us to the
useful following equation

(2.2) W’(kmya)W(n,b) = W(m,a)*lawz(n,b)*lcr

for all (m,a), (n,b) € P x N* where 0 = (m,a) U (n,b).
We can have a semigroup C*-algebra generated by a covariant iso-
metric representation of P x N* by a similar way in [16].

DEFINITION 2.2. The universal C*-algebra for covariant isometric
representations of P x N*, denoted by T (P x N*), is the C*-algebra
generated by the canonical covariant isometric representation W : P x
N* — T (P x N*) with the following proprety :

if X is a covariant isometric representation of P x N*, then there is
a homomorphism 7 : T(P xN*) — C*({X(;nq) : (m,a) € PxN*}) such
that T(W(m,q)) = X(m,a)- We call T(P x N*) the covariant semigroup
C*- algebra of P x N*,

THEOREM 2.3. Let A be the universal C*-algebra generated by isome-
tries s,t, and {vp : p is a prime number} satisfying relations
(R1) t2 =3
(R2) ts = st s*t = ts*, and t*s = st*,
(T1) vps = sPup, vpt = tPuy, vps™ = s*Puy,, and vpt* = t*Puy,
(T2) v pvq = UqUzw
(T3) vyvg = vqv, when p # g,
(T4) s*v, = sP~1u,s*,
(T5) v

skltk% =0 for 1 < 2k; + 3ks < p,
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(T6) v;skvp =0 for 1 < k < p when p # 2, and vssvy = ts*,
U;tkvp =0 for 1 <k < p when p # 3, vitvy = ts*, vitlvy = s,
and U;tks*kvp =0forl<k<p.

Then there is an isomorphism 7 of T(P x N*) onto A such that
W(W(QJ)) =s, W(W(&l)) =t, and W(W(O,p)) = vy, for every prime p.

Proof. We can see that the formular X, ,) = s*tYv, where m =
2x 4+ 3y some z,y in N defines Nica-covariant isometric representation
X = Xst0 on P x N* into A in [1]. Since 7 (P x N*) is the universal
C*-algebra for covariant isometric representations of P x N*_ it induces
a homomorphism 7, : 7T(P x N*) — A such that 7r57t,U(W(m7a)) =
X(m,a)- It is not hard to see that 75, is an isomorphism of T(P xN*)
onto A in [1].

O

3. Ground states on 7 (P x N*)

Let B be a C*-algebra. A C*-algebra dynamical system is a pair
(B, R, «) consisting of a C*-algebra B and a strongly continuous action
a: R — Aut(B). By strong continuity we mean that the map t — ay(a)
is a continuous map from R into B for each fixed a € B. An element a € B
is a—analytic if the function R — B given by ¢t — (a) extends to an
entire function C — B given by z — «,(a). For the inverse temperature
B > 0 a state ¢ is a KMSg state if ¢(ab) = ¢(b a;s(a)) for all a-analytic
elements a,b € B. A ground state ¢ is satisfies z — ¢(b a.(a)) is bounded
on the upper-half plane for all a-analytic elements a,b € B.

Let us consider the unitary representation u : R — U(£?(P x NX))
defined by

UrO(m,q) = ai’“é(mva) (r € R)
where {0(;,q) : (m,a) € P x N} is the canonical orthonormal basis of
?2(P x N*) and U(£2(P x NX)) is the group of unitary operators in
B(f2(P x N¥)). Let £ : P x N* — B(?(P x N*)) be the left regular

isometric representation on P x N* defined by
‘C(m,a)é(n,b) = 5(m,a)(n,b) for (m, a), (n, b) € P x N*.

The reduced semigroup C*-algebra Cpeq(P x NX) on £2(P x N*) is gen-
erated by the left regular isometric representation £ on P x N*. Then
the unitary group {u,|r € R} induces the automorphism group 7,.(a) =
upaul(a € Creq(P x N*)) of the reduced semigroup C*-algebra Ccq(P x
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NX) on £2(P x NX). In fact, it follows from the definition of the left
regular isometric representation that

Tr(ﬁ(m)) =L, 7'r(£(3,1)) = L(3,), and TT(‘C(O,p)) =p"Lop)
for p € P and r € R. Since the left regular isometric representation is
covariant, by the universality of 7 (P x N*) there is a x-homomorphism
® from T (P x N*) onto Cpeq(P x N*) where ®(W(,,.q4)) = Lm,q) for
(m,a) € P x N*. Thus we can see that there is a strongly continuous
action o of R on 7 (P x N*) such that

0r(s) = s, o,(t) =t, and 0,(vy) = p"v, for p € P and r € R,
PROPOSITION 3.1. For our system (T (P x N*),R, o) the elements

sT Y v, t*Y2 "2 for T(P x N*) are all analytic for z1,y1,z2,y2 € N
and a, b € N*,

Proof. By the definition of o, we have
o (8T Y 0 Up Y2 8* ) = (a5 Y 0, ) (D Tt 6702
(ab™ )" (sP Y Ut Y2 s72),
Therefore the function r — o, (s"1tY v, v;t*¥2s*%2) is the restriction to R

of an entire function on C. So s*tYv, and v ¥ s*" are all analytic for
z,y,2',y € Nand a, b € N*, O

Since T (P xN*) is generated by the canonical covariant isometric rep-
resentation, we can see that span{W(m,a)W’(*nvb) : (m,a),(n,b) € PxN*}
is a dense #-subalgebra of 7 (P x N*) by the covariance. Further-
more, from Theorem 2.3 we have also that span{s™'tY'v,v;t*¥2s**2 :
(m,a), (n,b) € PxN*, m = 2x14+3y;, n = 2xo+3ys2, and x1,x2,y1,y2 €
N} is a dense *-subalgebra of A.

PROPOSITION 3.2. If a state ¢ of T (P x N*) is a ground state for o,
then

P(s"tvpugt™ s ) =0
for z,2',y,y € Nand p,q € P .

Proof. Let ¢ be a ground state for 0. By Proposition 3.1, s*tYv,, and
U;;t*yls*"”/ are all analytic for z,y,2’,y’ € N and p, ¢ € P. The expression
qﬁ(sztyvpanriﬁ(v;t*y/s*‘”,)) = (%)io‘*ﬁqﬁ(smtyvpv;t*y/s*x/) is bounded on
the upper half plane (8 > 0) if and only if gb(sztyvpvj;t*y/s*m/) =0. 0O

Moreover, if a state ¢ of T(P x N*) is a ground state for o, then
d(s"tYupuit™ ' ) = 0 whenever b # 1 for z,y,2',y/ € N and b € N*.
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PROPOSITION 3.3. If a state ¢ of T(P x N*) satisfies the condition
O(s"tVupupt™ s*7 ) = 0 whenever z,2',y,y',a,b € N and b # 1, then ¢
is a ground state for o.

Proof. Suppose that ¢(s*tYv,v;t*¥ s** ) = 0 whenever b is not 1. We

choose two analytic elements X = s"tYv,v;t™ s** and Y for 0. The
Cauchy-Schwarz inequality yields

6 00X = (9 sy x)P

16

< (%)_6
p B

= (=) o(Y'Y)p(X*X),

a

P(YY)p(X*X)

and

X*X = (sxtyvavg‘t*y,s*x,)*(sxtyvavgft*y,s*x/)
= sx,ty/vaZt*ys*‘”smtyvav;t*y/s*x/
— vbvg‘t*y,s*x,.

Since the last factor ¢(X*X) = gb(sx/ tylvbv;;t*yl s*wl) vanishes for b # 1,
the function a+if — ¢(Y*041i3(X)) is bounded for § > 0. This implies
that ¢ is a ground state. O

THEOREM 3.4. If a state ¢ of T (P xN*) is a ground state for o, then
qb(sf”tyvavgt*y/ s*wl) =0 whenever a # 1 or b # 1.

Proof. Let ¢ be the state of T (P x N*). The expression

d(s3tB v gt ™ s o1 ig(sT Y VqUp Y2 52))

= (%)ia—ﬁ¢(sw3ty3 VST ST GT YL Y2 602)
is bounded on the upper half plane (5 > 0) if and only if
(3.1) O(sTtP vt s ST pup T2 s*2) = 0

where a < b. Suppose that ¢ is a ground state. We consider z; =
T4, Y1 = Y4, and d = a = 1. Then ¢(s"3t¥Bv.v;t*¥25*2) = 0 for 1 < b.
Taking adjoints (3.1), we have

G(sTHP2opu Y s gT A Tt 5T ) = 0

whenever a < b. Put again x1 = x4, y1 = y4, and d = a = 1. Then we
have ¢(s™2t2upvkt*¥3s*73) =0 for 1 < b. O
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!

THEOREM 3.5. Ifastate ¢ of T (P xN*) satisfies qb(s”ﬁtyvavg‘t*y/ $* ) =
0 whenever a # 1 or b # 1, then ¢ is a ground state for o.

Proof. Suppose that ¢(s"tYv,v;t*¥ s** ) = 0 whenever a or b is not

1. We choose two analytic elements X = s*tYv,v;t™ s** and Y for o.
By the Cauchy-Schwarz inequality we have

(Vi = 1) s )P
() B )e(XX)
p B

= (=) o(YY)(X*X),

a

IN

and
’ / ’ /
X*X = (s"tTuaupt™ s ) (sTtYuaupt™Y M)
!/

! I !

= "tV vuitY s Tt vgupttY sTT
! I ! !

= "tV uyupt™ s .

Since the last factor ¢(X*X) = ¢(sx/ tylvbvgt*y/ s*"’“"/) vanishes for b # 1,
the function a+if — ¢(Y*041i8(X)) is bounded for 5 > 0. This implies
that ¢ is a ground state. O
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