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GROUND STATES OF A COVARIANT SEMIGROUP

C∗-ALGEBRA

Sun Young Jang* and Jieun Ahn**

Abstract. Let P o N× be a semidirect product of an additive
semigroup P = {0, 2, 3, · · · } by a multiplicative positive natural
numbers semigroup N×. We consider a covariant semigroup C∗-
algebra T (PoN×) of the semigroup PoN×. We obtain the condition
that a state on T (PoN×) can be a ground state of the natural C∗-
dynamical system (T (P o N×),R, σ).

1. Introduction

The C∗-dynamical system is a mathematical model of a quantumn
system. In the basic idea behind modeling quantum systems using a
C∗−algebra, the observables in the quantumn system correspond to self
adjoint elements of a C∗−algebra A and the states of the quantum
system correspond to states on A. When the system is in a state φ, the
expected value of an observable a is given as φ(a). The time evolution
of a quantum system is explained by an action α : R → Aut(A), in the
sense that if the system is in state φ at initial time to, then at time to
+ t the system is in state φ ◦ αt.

The theory of KMS states gives a mathematical formalism for de-
scribing the state φ of the system when it is in equilibrium [3], [4]. The
KMS condition was originated as a characterization of Gibbs equilib-
rium states in quantum statistical mechanics and the condition for finite
systems thoroughly characterizes the Gibbs states. This coincidence be-
tween KMS and Gibbs states appears to persist in many models after
the thermodynamic limit. Thus if a thermodynamic system is described
by a C∗-dynamical system (A, τ) and the Gibbs formalism is considered,
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then it is natural to interpret the set Kβ of (τ, β)-KMS states as the set
of equilibrium states at the inverse temperature β.

Recently there are very interesting results on the KMS states of C∗-
dynamical systems of C∗-algebras generated by isometries [7], [8], [9],
[12], [14], [16], and [17]. Sometimes the uniqueness property of C∗-
algebras generated by isometries is a strong tool in computing KMS
states on them. The uniqueness property of C∗-algebras generated by
isometries is the generalization of Coburn’s well known theorem, which
asserted that the C∗-algebra generated by a non-unitary isometry on
a separable infinite dimensional Hilbert space does not depend on the
particular choice of the isometry. There are lots of significant results on
it [5], [6], [7], [18], [19], and [20]. It is known that the Toeplitz-Cuntz
algebra T On has KMS states at every inverse temperature β ≥ log n,
but only the one with β = log n factors through a state of On. Cuntz
introduced a C∗-algebra QN generated by an isometric representation
of the semidirect product N o N× of the additive semigroup N by the
natural action of the multiplicative semigroup N× [7]. He proved that
QN is simple and there exists a unique KMS state at the inverse tem-
perature 1. He also showed that QN is closely related to other very
interesting C∗-algebras, such as the Bunce-Deddens algebras and Hecke
C∗-algebra of Bost and Connes [2]. In [16], [17] Laca and Raeburn inves-
tigated the structure of the universal semigroup C∗-algebra C∗c (NoN×)
of covariant isometric representations on N o N×. They showed that
the semigroup C∗-algebra C∗c (NoN×) have interesting properties in the
virtue of [10], [11], and [15]. In particular they showed that KMS states
for the natural dynamic of C∗c (N o N×) have phase transitions [17]. If
the inverse temperature is∞, we have a specific state called by a ground
state. Ground states can be described as the zero temperature limits of
KMS states.

We consider the semidirect product PoN× of the additive semigroup
P = {0, 2, 3, · · · } by the multiplicative semigroup N×. The semigroup
P = {0, 2, 3, · · · } is the generating subsemigroup of the integer group Z.
Even though (Z,N) is the typical model of a quasi-lattice ordered group,
the order structure of (Z,P) with the positive cone P is not a quasi-
lattice ordered group. The author showed that the reduced semigroup
C∗-algebra C∗red(P) is isomorphic to the classical Toeplitz algebra T (N)
by using Coburn’s result [13]. We see that ( Q o Q∗+,P o N×) is not
a quasi-lattice ordered group but we can define a covariant isometric
representation on PoN× where QoQ∗+ is the semidirect product of the
additive rationals Q by the multiplicative positive rationals Q∗+. From
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the structure of a covariant semigroup C∗-algebra T (PoN×), we obtain
conditions for the existence of the ground state on the natural dynamical
system of a covariant semigroup C∗-algebra T (P oN×).

2. A covariant semigroup C∗-algebra T (P oN×)

Let QoQ∗+ denote the semidirect product of the additive rationals Q
by the multiplicative positive rationals Q∗+, where the group operation
and the inverse element are given by

(r, x)(s, y) = (r + xs, xy) for r, s ∈ Q and x, y ∈ Q∗+,

(r, x)−1 = (−x−1r, x−1) for r ∈ Q and x ∈ Q∗+.
Let P = {0, 2, 3, · · · } be a semigroup of Z. Then the semidirect product
P oN× is the subsemigroup of QoQ∗+.

Proposition 2.1. (QoQ∗+,PoN×) is a partially ordered group and
the generators (2, 1), (3, 1), and {(0, p) : p is a prime number} satisfy
the relations

(0, p)(2, 1) = (2, 1)p(0, p), (0, p)(3, 1) = (3, 1)p(0, p), and (0, p)(0, q) = (0, q)(0, p)

for all prime numbers p and q.

Proof. Since (P o N×) ∩ (P o N×)−1 = {(0, 1)}, the subsemigroup
P oN× induces a left-invariant partial order on QoQ∗+ as follows : for
(r, x) and (s, y) in Q×Q∗+,

(r, x) ≤ (s, y) ⇔ (r, x)−1(s, y) ∈ P oN×

⇔ x−1(s− r) ∈ P and x−1y ∈ N×.(2.1)

Suppose that G is a group containing elements u and {vp : p is
a prime number} satisfying the relations

vpu = upvp and vpvq = vqvp.

Since Q∗+ is the free abelian group generated by prime numbers and
vp commutes with vq, the map p 7→ vp extends to a homomorphism
v : Q∗+ → G. Let P = {p : p is a prime number in Q∗+}. Consider an inclu-
sion map i : P→ Q∗+ by p 7→ p1 and a map f : P→ G defined by p 7→ vp.

Define v : Q∗+ → G by v(1) = e and v(pδ11 · · · pδnn ) = f(p1)
δ1 · · · f(pn)δn

for a nonempty reduced word pδ11 · · · pδnn .
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We can see v is a well-defined homomorphism such that v ◦ i = f .
Moreover v is unique because if g : Q∗+ → G is a homomorphism such
that g ◦ i = f, then

g(pδ11 · · · p
δn
n ) = g ◦ i(p1)δ1 · · · g ◦ i(pn)δn

= f(p1)
δ1 · · · f(pn)δn

= v(pδ11 · · · p
δn
n ).

So we have that g = v. Since Z is free abelain, for each n ∈ N× ( 1
nZ,+)

is a free abelian group. So we define a homomorphism φn : 1
nZ→ G by

k 7→ v−1n ukvn for each n ∈ N× and these combine to give a well-define
homomorphism φ : Q = ∪n 1

nZ → G by k
n 7→ φn(k) for k

n ,
l
m ∈ Q where

m,n ∈ N×, because

φ(
k

n
+

l

m
) = v−1nmu

km+nlvnm

= (v−1nmu
kmvnm)(v−1nmu

nlvnm)

= φnm(km)φnm(nl)

= φ(
k

n
)φ(

l

m
).

Now the first relation extends to vru
k = urkvr and it follows easily

that v and φ combine to give a homomorphism F : QoQ∗+ → G of the

semidirect product Q o Q∗+ into G by ( kn , x) 7→ φ( kn)vx. In more detail

for ( kn , x) = ( kn , 1)(0, x) ∈ QoQ∗+,

F(
k

n
, x) = F(

k

n
, 1)F(0, x) = v−1n ukvnvx and

F((
k1
n1
, x1)(

k2
n2
, x2)) = v−1n1n2

uk1n2un1x1k2vn1n2vx1x2

= v−1n1
(v−1n2

uk1n2)(u(n1x1)k2vn1x1)vn2x2

= v−1n1
(uk1v−1n2

)(vn1x1u
k2)vn2x2

= (v−1n1
uk1vn1)vx1(v−1n2

uk2vn2)vx2

= F(
k1
n1
, x1)F(

k2
n2
, x2).

We see that the group QoQ∗+ is generated by elements (1, 1) and {(0, p) :
p is a prime number} which satisfy the relations

(0, p)(1, 1) = (1, 1)p(0, p) and (0, p)(0, q) = (0, q)(0, p)
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for all prime numbers p, q and this is a presentation of Q o Q∗+ in
[17]. We shall consider the unital subsemigroup P o N× of Q o Q∗+
interpreted in the category of monoids where P = {0, 2, 3, 4, 5, · · · }.
Since (2, 1)−1(3, 1) = (1, 1), P o N× can generate Q o Q∗+. Since the
semigroup P is generated by the elements 2 and 3, P o N×is gener-
ated by the elements (2, 1), (3, 1), and {(0, p) : p is a prime num-
ber} which satisfy the relations (0, p)(2, 1) = (2, 1)p(0, p) , (0, p)(3, 1) =
(3, 1)p(0, p), and (0, p)(0, q) = (0, q)(0, p) for all prime numbers p, q.

If (r, x), (s, y) ∈ PoN× have common upper bounds in (QoQ∗+,Po
N×), we will denote the smallest one among common upper bounds of
(r, x) and (s, y) by (r, x)d(s, y) in the usual order in QoQ∗+. Even though
the semigroup P o N× gives a partial order on the semi-direct product
group QoQ∗+ by (2.1), but ( QoQ∗+, PoN×) is not a quasi-lattice ordered
group. However we define a covariant isometric representation on PoN×
in the similiar way of Nica’s covariant isometric representation [1].

Now we construct the C∗-algebra T (P o N×) generated by an iso-
metric representation of P oN×. First, we introduce the isometric rep-
resentation of a discrete semigroup M . Let M denote a semigroup with
unit e and B be a unital C∗-algebra. A map W : M → B, x 7→ Wx

is called an isometric homomorphism if We = 1, Wx is an isometry
and Wxy = WxWy for all x, y ∈ M. If B is the ∗-algebra B(H) of all
bounded linear operators of a non-zero Hilbert space H, we call (H,W)
an isometric representation of M .

Nica [19] introduced the covariant isometric representation of a quasi-
lattice ordered group as follows: for a quasi-lattice ordered group M, an
isometric representation V : M → B(H) is Nica covariant if

VxV
∗
x VyV

∗
y =

{
0 if x ∨ y =∞,
Vx∨yV

∗
x∨y if x ∨ y <∞

where x ∨ y is the least common upper bound of x and y in M. It is
known that Nica’s covariance is a very suitable isometric representation
to explain the uniqueness property of C∗-algebra generated by isometric
representations. The motivation of the condition of the covariant isomet-
ric representation is the range projections of the left regular isometric
representation of a left cancellative semigroup M . The left regular iso-
metric representation on the discrete and left cancellative semigroup M
is given by

Lmδn = δmn for m,n ∈M,
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where {δn : n ∈ M} is the canonical orthonormal basis of `2(M). Even
though (Q o Q∗+, P o N×) is not a quasi-lattice ordered group, we can
define the covariant isometric representaion of P o N× in the sence of
Nica’s covariant isometric representation.

A isometric representation W : PoN× → B(H) of PoN× on a Hilbert
space H is covariant if it satisfies

W(m,a)W
∗
(m,a)W(n,b)W

∗
(n,b)

=

{
0 if (m+ aP) ∩ (n+ bP) = ∅,
W(m,a)d(n,b)W

∗
(m,a)d(n,b) if (m+ aP) ∩ (n+ bP) 6= ∅.

We use the notation W∞ = 0 when (m, a) d (n, b) =∞, thus we can
always have

W(m,a)W
∗
(m,a)W(n,b)W

∗
(n,b) = W(m,a)d(n,b)W

∗
(m,a)d(n,b)

for all (m, a), (n, b) ∈ P o N×. The covariant condition leads us to the
useful following equation

(2.2) W∗
(m,a)W(n,b) = W(m,a)−1σW∗

(n,b)−1σ

for all (m, a), (n, b) ∈ P oN× where σ = (m, a) d (n, b).
We can have a semigroup C∗-algebra generated by a covariant iso-

metric representation of P oN× by a similar way in [16].

Definition 2.2. The universal C∗-algebra for covariant isometric
representations of P o N×, denoted by T (P o N×), is the C∗-algebra
generated by the canonical covariant isometric representation W : P o
N× → T (P oN×) with the following proprety :

if X is a covariant isometric representation of P oN×, then there is
a homomorphism π : T (PoN×)→ C∗({X(m,a) : (m, a) ∈ PoN×}) such

that π(W(m,a)) = X(m,a). We call T (P o N×) the covariant semigroup

C∗- algebra of P oN×.

Theorem 2.3. LetA be the universal C∗-algebra generated by isome-
tries s, t, and {υp : p is a prime number} satisfying relations
(R1) t2 = s3,
(R2) ts = st, s∗t = ts∗, and t∗s = st∗,
(T1) υps = spυp, υpt = tpυp, υps

∗ = s∗pυp, and υpt
∗ = t∗pυp,

(T2) υpυq = υqυp,
(T3) υ∗pυq = υqυ

∗
p when p 6= q,

(T4) s∗υp = sp−1υps
∗,

(T5) υ∗ps
k1tk2υp = 0 for 1 ≤ 2k1 + 3k2 < p,
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(T6) υ∗ps
kυp = 0 for 1 ≤ k < p when p 6= 2, and υ∗2sυ2 = ts∗,

υ∗pt
kυp = 0 for 1 ≤ k < p when p 6= 3, υ∗3tυ3 = ts∗, υ∗3t

2υ3 = s,

and υ∗pt
ks∗kυp = 0 for 1 ≤ k < p.

Then there is an isomorphism π of T (P o N×) onto A such that
π(W(2,1)) = s, π(W(3,1)) = t, and π(W(0,p)) = υp for every prime p.

Proof. We can see that the formular X(m,a) := sxtyυa where m =
2x + 3y some x, y in N defines Nica-covariant isometric representation
X = Xs,t,υ on P o N× into A in [1]. Since T (P o N×) is the universal
C∗-algebra for covariant isometric representations of PoN×, it induces
a homomorphism πs,t,υ : T (P o N×) → A such that πs,t,υ(W(m,a)) =

X(m,a). It is not hard to see that πs,t,υ is an isomorphism of T (P oN×)
onto A in [1].

3. Ground states on T (P oN×)

Let B be a C∗-algebra. A C∗-algebra dynamical system is a pair
(B,R, α) consisting of a C∗-algebra B and a strongly continuous action
α : R→ Aut(B). By strong continuity we mean that the map t 7→ αt(a)
is a continuous map from R into B for each fixed a ∈ B. An element a ∈ B
is α−analytic if the function R → B given by t 7→ αt(a) extends to an
entire function C→ B given by z 7→ αz(a). For the inverse temperature
β > 0 a state φ is a KMSβ state if φ(ab) = φ(b αiβ(a)) for all α-analytic
elements a, b ∈ B. A ground state φ is satisfies z 7→ φ(b αz(a)) is bounded
on the upper-half plane for all α-analytic elements a, b ∈ B.

Let us consider the unitary representation u : R → U(`2(P o N×))
defined by

urδ(m,a) := airδ(m,a) (r ∈ R)

where {δ(m,a) : (m, a) ∈ P o N} is the canonical orthonormal basis of

`2(P o N×) and U(`2(P o N×)) is the group of unitary operators in
B(`2(P o N×)). Let L : P o N× → B(`2(P o N×)) be the left regular
isometric representation on P oN× defined by

L(m,a)δ(n,b) = δ(m,a)(n,b) for (m, a), (n, b) ∈ P oN×.

The reduced semigroup C∗-algebra Cred(P oN×) on `2(P oN×) is gen-
erated by the left regular isometric representation L on P o N×. Then
the unitary group {ur|r ∈ R} induces the automorphism group τr(a) =
urau

∗
r(a ∈ Cred(P oN×)) of the reduced semigroup C∗-algebra Cred(P o
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N×) on `2(P o N×). In fact, it follows from the definition of the left
regular isometric representation that

τr(L(2,1)) = L(2,1), τr(L(3,1)) = L(3,1), and τr(L(0,p)) = pirL(0,p)
for p ∈ P and r ∈ R. Since the left regular isometric representation is
covariant, by the universality of T (PoN×) there is a ∗-homomorphism
Φ from T (P o N×) onto Cred(P o N×) where Φ(W(m,a)) = L(m,a) for

(m, a) ∈ P o N×. Thus we can see that there is a strongly continuous
action σ of R on T (P oN×) such that

σr(s) = s, σr(t) = t, and σr(υp) = pirυp for p ∈ P and r ∈ R.

Proposition 3.1. For our system (T (P o N×),R, σ) the elements
sx1ty1υaυ

∗
b t
∗y2s∗x2 for T (P o N×) are all analytic for x1, y1, x2, y2 ∈ N

and a, b ∈ N×.

Proof. By the definition of σr, we have

σr(s
x1ty1υaυ

∗
b t
∗y2s∗x2) = (airsx1ty1υa)(b

−irυ∗b t
∗y2s∗x2)

= (ab−1)ir(sx1ty1υaυ
∗
b t
∗y2s∗x2).

Therefore the function r 7→ σr(s
x1ty1υaυ

∗
b t
∗y2s∗x2) is the restriction to R

of an entire function on C. So sxtyυa and υ∗b t
∗y′s∗x

′
are all analytic for

x, y, x′, y′ ∈ N and a, b ∈ N×.

Since T (PoN×) is generated by the canonical covariant isometric rep-
resentation, we can see that span{W(m,a)W

∗
(n,b) : (m, a), (n, b) ∈ PoN×}

is a dense ∗-subalgebra of T (P o N×) by the covariance. Further-
more, from Theorem 2.3 we have also that span{sx1ty1υaυ∗b t∗y2s∗x2 :
(m, a), (n, b) ∈ PoN×, m = 2x1+3y1, n = 2x2+3y2, and x1, x2, y1, y2 ∈
N} is a dense ∗-subalgebra of A.

Proposition 3.2. If a state φ of T (P oN×) is a ground state for σ,
then

φ(sxtyυpυ
∗
q t
∗y′s∗x

′
) = 0

for x, x′, y, y′ ∈ N and p, q ∈ P .

Proof. Let φ be a ground state for σ. By Proposition 3.1, sxtyυp and

υ∗q t
∗y′s∗x

′
are all analytic for x, y, x′, y′ ∈ N and p, q ∈ P. The expression

φ(sxtyυpσα+iβ(υ∗q t
∗y′s∗x

′
)) = (1q )iα−βφ(sxtyυpυ

∗
q t
∗y′s∗x

′
) is bounded on

the upper half plane (β > 0) if and only if φ(sxtyυpυ
∗
q t
∗y′s∗x

′
) = 0.

Moreover, if a state φ of T (P o N×) is a ground state for σ, then

φ(sxtyυbυ
∗
b t
∗y′s∗x

′
) = 0 whenever b 6= 1 for x, y, x′, y′ ∈ N and b ∈ N×.
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Proposition 3.3. If a state φ of T (P o N×) satisfies the condition

φ(sxtyυbυ
∗
b t
∗y′s∗x

′
) = 0 whenever x, x′, y, y′, a, b ∈ N and b 6= 1, then φ

is a ground state for σ.

Proof. Suppose that φ(sxtyυbυ
∗
b t
∗y′s∗x

′
) = 0 whenever b is not 1. We

choose two analytic elements X = sxtyυaυ
∗
b t
∗y′s∗x

′
and Y for σ. The

Cauchy-Schwarz inequality yields

|φ(Y∗σα+iβ(X))|2 = |(a
b

)
iα−β

φ(Y∗X)|2

≤ (
a

b
)
−β
φ(Y∗Y)φ(X∗X)

= (
b

a
)
β

φ(Y∗Y)φ(X∗X),

and

X∗X = (sxtyυaυ
∗
b t
∗y′s∗x

′
)∗(sxtyυaυ

∗
b t
∗y′s∗x

′
)

= sx
′
ty
′
υbυ
∗
at
∗ys∗xsxtyυaυ

∗
b t
∗y′s∗x

′

= sx
′
ty
′
υbυ
∗
b t
∗y′s∗x

′
.

Since the last factor φ(X∗X) = φ(sx
′
ty
′
υbυ
∗
b t
∗y′s∗x

′
) vanishes for b 6= 1,

the function α+iβ 7→ φ(Y∗σα+iβ(X)) is bounded for β > 0. This implies
that φ is a ground state.

Theorem 3.4. If a state φ of T (PoN×) is a ground state for σ, then

φ(sxtyυaυ
∗
b t
∗y′s∗x

′
) = 0 whenever a 6= 1 or b 6= 1.

Proof. Let φ be the state of T (P oN×). The expression

φ(sx3ty3υcυ
∗
dt
∗y4s∗x4σα+iβ(sx1ty1υaυ

∗
b t
∗y2s∗x2))

= (
a

b
)iα−βφ(sx3ty3υcυ

∗
dt
∗y4s∗x4sx1ty1υaυ

∗
b t
∗y2s∗x2)

is bounded on the upper half plane (β > 0) if and only if

φ(sx3ty3υcυ
∗
dt
∗y4s∗x4sx1ty1υaυ

∗
b t
∗y2s∗x2) = 0(3.1)

where a < b. Suppose that φ is a ground state. We consider x1 =
x4, y1 = y4, and d = a = 1. Then φ(sx3ty3υcυ

∗
b t
∗y2s∗x2) = 0 for 1 < b.

Taking adjoints (3.1), we have

φ(sx2ty2υbυ
∗
at
∗y1s∗x1sx4ty4υdυ

∗
c t
∗y3s∗x3) = 0

whenever a < b. Put again x1 = x4, y1 = y4, and d = a = 1. Then we
have φ(sx2ty2υbυ

∗
c t
∗y3s∗x3) = 0 for 1 < b.
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Theorem 3.5. If a state φ of T (PoN×) satisfies φ(sxtyυaυ
∗
b t
∗y′s∗x

′
) =

0 whenever a 6= 1 or b 6= 1, then φ is a ground state for σ.

Proof. Suppose that φ(sxtyυaυ
∗
b t
∗y′s∗x

′
) = 0 whenever a or b is not

1. We choose two analytic elements X = sxtyυaυ
∗
b t
∗y′s∗x

′
and Y for σ.

By the Cauchy-Schwarz inequality we have

|φ(Y∗σα+iβ(X))|2 = |(a
b

)
iα−β

φ(Y∗X)|2

≤ (
a

b
)
−β
φ(Y∗Y)φ(X∗X)

= (
b

a
)
β

φ(Y∗Y)φ(X∗X),

and

X∗X = (sxtyυaυ
∗
b t
∗y′s∗x

′
)∗(sxtyυaυ

∗
b t
∗y′s∗x

′
)

= sx
′
ty
′
υbυ
∗
at
∗ys∗xsxtyυaυ

∗
b t
∗y′s∗x

′

= sx
′
ty
′
υbυ
∗
b t
∗y′s∗x

′
.

Since the last factor φ(X∗X) = φ(sx
′
ty
′
υbυ
∗
b t
∗y′s∗x

′
) vanishes for b 6= 1,

the function α+iβ 7→ φ(Y∗σα+iβ(X)) is bounded for β > 0. This implies
that φ is a ground state.
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