UNRAMIFIED SCALAR EXTENSIONS OF GRADED DIVISION ALGEBRAS

Yoon Sung Hwang

ABSTRACT. Let E be a graded central division algebra (GCDA) over a grade field R. Let S be an unramified graded field extension of R. We describe the grading on the underlying GCDA E' of E \otimes_R S which is analogous to the valuation on a tame division algebra over Henselian valued field.

Let D be a division algebra with a valuation. To this one associates a graded division algebra $GD = \bigoplus_{\gamma \in \Gamma_D} GD_{\gamma}$, where Γ_D is the value group of D and the summands GD_{γ} arise from the filtration on D induced by the valuation (see [5] for details). As is illustrated in [5], even though computations in the graded setting are often easier than working directly with D, it seems that not much is lost in passage from D to its corresponding graded division algebra GD. This has provided motivation to systematically study this correspondence, notably by Boulagouaz [1], Hwang, Tignol and Wadsworth [4, 5, 8], and to compare certain functors defined on these objects, notably the Brauer group. Also, the graded method is effectively used to calculate the reduced Whitehead group SK_1 of a division algebra, first on the graded level and then specialise to the non-graded setting by Hazrat, Wadsworth, and Yanchevskiĭ [2, 3, 9].

Let Γ be a torsion-free abelian group. A ring E is a graded division ring (with grade group in Γ) if E has additive subgroups E_{γ} for $\gamma \in \Gamma$ such that $E = \bigoplus_{\gamma \in \Gamma} E_{\gamma}$ and $E_{\gamma} E_{\delta} \subseteq E_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$, and each $E_{\gamma} \setminus \{0\}$ lies in E^* , the group of units of E. For background on graded division rings and proofs of their properties mentioned here, see [5]. The grade group of E is

$$\Gamma_{\mathsf{E}} = \{ \gamma \in \Gamma \mid \mathsf{E}_{\gamma} \neq \{0\} \},$$

a subgroup of Γ . For $a \in \mathsf{E}_{\gamma} \setminus \{0\}$ we write $\deg(a) = \gamma$. A significant property is that $\mathsf{E}^* = \bigcup_{\gamma \in \Gamma_\mathsf{E}} \mathsf{E}_{\gamma} \setminus \{0\}$, i.e., every unit of E is actually homogeneous (Γ_E torsion-free is needed for this). Thus, E is not a division ring if $|\Gamma_\mathsf{E}| > 1$. But, E has no zero divisors (This also depends on having Γ_E torsion-free). However,

Received November 14, 2012; Revised August 28, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 16 K20.$

Key words and phrases. graded central division algebras, graded fields, unramified extension.

 E_0 is a division ring, and each E_γ ($\gamma \in \Gamma_\mathsf{E}$) is a 1-dimensional left- and right- E_0 -vector space.

Let R=Z(E), the center of E, which is a graded subring of E. Indeed, R is a graded field, i.e., a commutative graded division ring. Then E is a left (and right) graded R-vector space, and we write [E:R] for $\dim_R(E)$. E is a graded central division algebra (GCDA) over R if $[E:R] < \infty$. There is a well-defined group homomorphism

(1)
$$\theta_{\mathsf{E}}: \Gamma_{\mathsf{E}}/\Gamma_{\mathsf{R}} \to \mathcal{G}(Z(\mathsf{E}_0)/\mathsf{R}_0)$$
 given by $\deg(a) + \Gamma_{\mathsf{R}} \mapsto (z \mapsto aza^{-1})$

for all $a \in \mathsf{E}^*$ and $z \in Z(\mathsf{E}_0)$, where $\mathcal{G}(Z(\mathsf{E}_0)/\mathsf{R}_0)$ denotes the Galois group of $Z(\mathsf{E}_0)$ over R_0 . It is known that θ_E is surjective (cf. Prop. 2.3 of [5]).

A graded algebra A over a graded field R is said to be a graded central simple algebra (GCSA) over R if A is a simple graded ring, $[A:R] < \infty$, and Z(A) = R. There is a theory of GCSA's over a graded field analogous to the theory of central simple algebras (CSA's) over a field (see Sec. 1 of [5]).

Let E be any GCDA over the graded field R, and let S be an unramified (or inertial) graded field extension of R (i.e., $\Gamma_S = \Gamma_R$ and S_0 is separable over R_0). Then by Prop. 1.1 of [5], $E \otimes_R S$ is a GCSA over S and $E \otimes_R S = E \otimes_{R_0} S_0$ as $S = S_0 \otimes_{R_0} R$. Let $G = \mathcal{G}(Z(E_0)/R_0)$ and $T = Z(E_0) \otimes_{R_0} S_0$.

As $Z(\mathsf{E}_0)$ is Galois over R_0 by Prop. 2.3 of [5], $T = \bigoplus_{i=1}^k Te_i$ where e_i 's are the primitive idempotents of T and G acts transitively on e_i 's (cf. the proof of Prop. 18.18 in [7]). Let $e = e_1$ and $e_{\sigma H} = \sigma(e)$ where σH is the left coset of H in G and $H = \operatorname{stab}_G(e)$ which is the stabilizer group of e in G.

Theorem. Let E, R, S, G, T and H as above. Let E' be the GCDA over S such that $[E']_g = [E \otimes_R S]_g$ in the graded Bauer group GBr(S) (see Sec. 3 of [5] for the definition of GBr(S)). Then,

- (a) $Z(\mathsf{E}_0') \cong Z(\mathsf{E}_0) \cdot \mathsf{S}_0;$
- (b) $\mathsf{E}_0' \sim \mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} (Z(\mathsf{E}_0) \cdot \mathsf{S}_0) \ in \ Br(Z(\mathsf{E}_0) \cdot \mathsf{S}_0);$
- (c) $\Gamma_{\mathsf{E}'}/\Gamma_{\mathsf{R}} = \theta_{\mathsf{E}}^{-1}(\mathcal{G}(Z(\mathsf{E}_0)/(Z(\mathsf{E}_0)\cap\mathsf{S}_0)), \text{ where } \theta_{\mathsf{E}} \text{ is the map of } (1). \text{ So } \Gamma_{\mathsf{E}'} \subseteq \Gamma_{\mathsf{E}} \text{ and } |\Gamma_{\mathsf{E}} : \Gamma_{\mathsf{E}'}| = [(Z(\mathsf{E}_0)\cap\mathsf{S}_0) : \mathsf{R}_0];$
 - (d) the following diagram is commutative:

$$\begin{array}{ccc} \Gamma_{\mathsf{E}'}/\Gamma_{\mathsf{S}} & \xrightarrow{i} & \Gamma_{\mathsf{E}}/\Gamma_{\mathsf{R}} \\ & & & & & & & \\ \theta_{\mathsf{E}'} \Big\downarrow & & & & & & \\ \mathcal{G}(Z(\mathsf{E}'_0)/\mathsf{S}_0) & \xrightarrow{\rho_{\mathsf{S}_0/\mathsf{R}_0}} & \mathcal{G}(Z(\mathsf{E}_0)/\mathsf{R}_0) \end{array}$$

where θ_{E} is the map of (1), i is the inclusion map, and $\rho_{\mathsf{S}_0/\mathsf{R}_0}$ is restriction of an automorphism from $Z(\mathsf{E}_0') \cong Z(\mathsf{E}_0) \cdot \mathsf{S}_0$ to $Z(\mathsf{E}_0)$.

Proof. Let e and $e_{\sigma H}$ be as above. Then $[e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e]_g = [\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S}]_g = [\mathsf{E}']_g$ in $GBr(\mathsf{S})$. Since

$$(e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e)_0 = e(\mathsf{E}_0 \otimes_{\mathsf{R}_0} \mathsf{S}_0)e = e(\mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} Z(\mathsf{E}_0) \otimes_{\mathsf{R}_0} \mathsf{S}_0)e$$

$$= e(\mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} (\bigoplus_{i=1}^k e_i T)) e = \mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} e T$$

$$\cong \mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} (Z(\mathsf{E}_0) \cdot \mathsf{S}_0),$$

 $(e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e)_0$ is simple. So, by Prop. 1.4(b) of [5], $\mathsf{E}_0' \sim \mathsf{E}_0 \otimes_{Z(\mathsf{E}_0)} (Z(\mathsf{E}_0) \cdot \mathsf{S}_0)$ in $Br(Z(\mathsf{E}_0) \cdot \mathsf{S}_0)$, and $Z(\mathsf{E}'_0) \cong Z(\mathsf{E}_0) \cdot \mathsf{S}_0$, and $\Gamma_{\mathsf{E}'} = \Gamma_{e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e} \subseteq \Gamma_{\mathsf{E}}$. Since $e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e = e(\mathsf{E} \otimes_{\mathsf{R}_0} \mathsf{S}_0)e = \bigoplus_{\gamma \in \Gamma_{\mathsf{F}}} e(\mathsf{E}_{\gamma} \otimes_{\mathsf{R}_0} \mathsf{S}_0)e, \text{ and } H = \mathrm{stab}_G(e) = \mathsf{S}_{\mathsf{R}_0} \mathsf{S}_{\mathsf{R$ $\rho_{\mathsf{S}_0/\mathsf{R}_0}(\mathcal{G}((Z(\mathsf{E}_0)\cdot\mathsf{S}_0)/\mathsf{S}_0)) = \mathcal{G}(Z(\mathsf{E}_0)/(Z(\mathsf{E}_0)\cap\mathsf{S}_0)), \text{ it suffices to show that }$ $e(\mathsf{E}_{\gamma} \otimes_{\mathsf{R}_0} \mathsf{S}_0)e \neq 0$ if and only if $\theta_{\mathsf{E}}(\gamma + \Gamma_{\mathsf{R}}) \in H$ (So, $\Gamma_{\mathsf{E}'}/\Gamma_{\mathsf{R}} = \Gamma_{e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e}/\Gamma_{\mathsf{R}} = \Gamma_{e(\mathsf{E} \otimes_{\mathsf{R}} \mathsf{S})e}$ $\theta_{\mathsf{F}}^{-1}(H)$). To show this, observe that $T = \bigoplus_{\sigma H} Te_{\sigma H}$, where σH are the left cosets of H in G and $e_{\sigma H} = \sigma(e)$, as G acts transitively on e_i 's. Let $a \in \mathsf{E}_{\gamma} - (0)$, and let $\tau = \theta_{\mathsf{E}}(\gamma + \Gamma_{\mathsf{R}}) \in G = \mathcal{G}(Z(\mathsf{E}_0)/\mathsf{R}_0) = \mathcal{G}(T/\mathsf{S}_0)$. Then τ is the conjugation by $a \otimes 1$ on $T = Z(\mathsf{E}_0) \otimes_{\mathsf{R}_0} \mathsf{S}_0$. So, $(a \otimes 1)e(a \otimes 1)^{-1} = \tau(e) = e_{\tau H}$.

- (1) When $\tau = \theta_{\mathsf{E}}(\gamma + \Gamma_{\mathsf{R}}) \in H$, i.e., $\gamma + \Gamma_{\mathsf{R}} \in \theta_{\mathsf{E}}^{-1}(H)$, $e(a \otimes 1)e(a \otimes 1)^{-1} =$
- $ee_{\tau H} = e. \text{ So, } e(\mathsf{E}_{\gamma} \otimes_{\mathsf{R}_{0}} \mathsf{S}_{0})e \neq 0.$ $(2) \text{ When } \gamma + \Gamma_{\mathsf{R}} \notin \theta_{\mathsf{E}}^{-1}(H), \text{ i.e., } \tau \notin H, \text{ Then for } b = \sum_{i=1}^{n} a_{i} \otimes s_{i} \in \mathsf{E}_{\gamma} \otimes_{\mathsf{R}_{0}} \mathsf{S}_{0},$ $\text{where } a_{i} \in \mathsf{E}_{\gamma} \text{ and } s_{i} \in \mathsf{S}_{0}, \ ebe = e(\sum_{i=1}^{n} (a_{i} \otimes 1)e(1 \otimes s_{i})) = e(\sum_{i=1}^{n} e_{\tau H}(a_{i} \otimes 1)e(1 \otimes s_{i}) = e(\sum_$ $(s_i) = ee_{\tau H}b = 0$. So, $e(\mathsf{E}_{\gamma} \otimes_{\mathsf{R}_0} \mathsf{S}_0)e = 0$.

Let $B = e(E \otimes_R S)e$. Then, as B_0 is simple, by Cor. 2.3 of [8], $\theta_{E'} = \theta_B$ where $\theta_{\rm B}$ is the map defined in (2.5) of [8]. So, the commutativity of the above diagram is followed.

Now, we will use this theorem to prove the analogous theorem for tame division algebras over a Henselian valued field.

Corollary (Theorem 3.1 of [6]). Let (F, v) be a Henselian valued field, and let D be any tame CDA (central division algebra) over F. Let L be any inertial extension field of F (i.e., $[\overline{L}:\overline{F}]=[L:F]$ and \overline{L} is separable over \overline{F}). Let D_L be the CDA over L with $D_L \sim D \otimes_F L$ in Br(L). Then,

- (a) $Z(\overline{D_L}) \cong Z(\overline{D}) \cdot \overline{L};$
- (b) $\overline{D_L} \cong (\overline{D})_{Z(\overline{D}) \cdot \overline{L}};$
- (c) $\Gamma_{D_L}/\Gamma_F = \theta_D^{-1}(\mathcal{G}(Z(\overline{D})/(Z(\overline{D}) \cap \overline{L})), \text{ where } \theta_D \text{ is a well-defined group}$ homomorphism
- $\theta_D: \Gamma_D/\Gamma_F \to \mathcal{G}(Z(\overline{D})/\overline{F})$ given by $v(d) + \Gamma_F \mapsto (\overline{z} \mapsto \overline{dzd^{-1}})$ (2)

for all $d \in D^*$ and $\overline{z} \in Z(\overline{D})$. So $\Gamma_{D_L} \subseteq \Gamma_D$ and $|\Gamma_D : \Gamma_{D_L}| = [(Z(\overline{D}) \cap \overline{L}) : \overline{F}];$ (d) the following diagram is commutative:

$$\begin{array}{ccc}
\Gamma_{D_L}/\Gamma_L & \xrightarrow{i} & \Gamma_D/\Gamma_F \\
\theta_{D_L} \downarrow & & \theta_D \downarrow \\
\mathcal{G}(Z(\overline{D_L})/\overline{L}) & \xrightarrow{\rho_{L/F}} & \mathcal{G}(Z(\overline{D})/\overline{F})
\end{array}$$

where θ_D is the map of (2), i is the inclusion map, and ρ_{L_0/F_0} is restriction of an automorphism from $Z(\overline{D_L}) \cong Z(\overline{D}) \cdot \overline{L}$ to $Z(\overline{D})$.

Proof. Let GD and GF be the graded division algebra and the graded field derived from D and F, respectively, as defined in Sec. 4 of [5]. Then GD is a GCDA over GF by Prop. 4.3 of [5], and GL is unramified over GF as $\Gamma_{GL} = \Gamma_L = \Gamma_F = \Gamma_{GF}$ and $(GL)_0 (= \overline{L})$ is separable over $(GF)_0 (= \overline{F})$ as L is inertial over F. Also, GD_L is the GCDA over GL such that $[GD_L]_g = [GD \otimes_{GF} GL]_g$ in GBr(GL) by Cor. 5.7 of [5]. So, by applying the above theorem with E = GD, R = GF and S = GL,

- (a) $Z(\overline{D_L}) = Z((GD_L)_0) \cong Z((GD)_0) \cdot (GL)_0 = Z(\overline{D}) \cdot \overline{L}$.
- (b) $\overline{D_L} = (GD_L)_0 \sim (GD)_0 \otimes_{Z((GD)_0)} (Z((GD)_0) \cdot (GL)_0) = \overline{D} \otimes_{Z(\overline{D})} (Z(\overline{D}) \cdot \overline{L})$. So, $\overline{D_L} \cong (\overline{D})_{Z((\overline{D}) \cdot \overline{L}}$.
- (c) Let θ_{GD} be the map of (1) with E = GD. Then, as $\theta_{GD} = \theta_D$, $\Gamma_{D_L}/\Gamma_F = \Gamma_{GD_L}/\Gamma_{GF} = \theta_{GD}^{-1}(\mathcal{G}(Z(G((GD)_0))/(Z(GD)_0\cap (GL)_0)) = \theta_D^{-1}(\mathcal{G}(Z(\overline{D})/(Z(\overline{D}) \cap \overline{L})))$.
- (d) It is clear that the commutative diagram of the theorem becomes the above diagram. $\hfill\Box$

Acknowledgements. We wish to thank Adrian R. Wadsworth for helpful suggestions.

References

- M. Boulagouaz, Le gradué d'une algèbre à division valuée, Comm. Algebra 23 (1995), no. 11, 4275–4300.
- [2] R. Hazrat and A. R. Wadsworth, SK₁ of graded division algebras, Israel J. Math. 183 (2011), 117–163.
- [3] _____, Unitary SK₁ of graded and valued division algebras, Proc. Lond. Math. Soc. 103 (2011), no. 3, 508-534.
- [4] Y.-S. Hwang and A. R. Wadsworth, Algebraic extensions of graded and valued fields, Comm. Algebra 27 (1999), no. 2, 821–840.
- [5] ______, Correspondences between valued division algebras and graded division algebras,
 J. Algebra 220 (1999), no. 1, 73–114.
- [6] B. Jacob and A. R. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no.1, 126–179.
- [7] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998.
- [8] J.-P. Tignol and A. R. Wadsworth, Value functions and associated graded rings for semisimple algebras, Trans. Amer. Math. Soc. 362 (2010), no. 2, 687–726.
- [9] A. R. Wadsworth and V. I. Yanchevskii, Unitary SK₁ for a graded division ring and its quotient division ring, J. Algebra 352 (2012), 62–78.

DEPARTMENT OF MATHEMATICS

Korea University

Seoul 136-701, Korea

 $E ext{-}mail\ address: yhwang@korea.ac.kr}$