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UNRAMIFIED SCALAR EXTENSIONS OF GRADED

DIVISION ALGEBRAS

Yoon Sung Hwang

Abstract. Let E be a graded central division algebra (GCDA) over a
grade field R. Let S be an unramified graded field extension of R. We
describe the grading on the underlying GCDA E′ of E ⊗R S which is
analogous to the valuation on a tame division algebra over Henselian
valued field.

Let D be a division algebra with a valuation. To this one associates a graded
division algebra GD =

⊕

γ∈ΓD
GDγ , where ΓD is the value group of D and the

summands GDγ arise from the filtration on D induced by the valuation (see
[5] for details). As is illustrated in [5], even though computations in the graded
setting are often easier than working directly with D, it seems that not much is
lost in passage from D to its corresponding graded division algebra GD. This
has provided motivation to systematically study this correspondence, notably
by Boulagouaz [1], Hwang, Tignol and Wadsworth [4, 5, 8], and to compare
certain functors defined on these objects, notably the Brauer group. Also, the
graded method is effectively used to calculate the reduced Whitehead group
SK1 of a division algebra, first on the graded level and then specialise to the
non-graded setting by Hazrat, Wadsworth, and Yanchevskĭı [2, 3, 9].

Let Γ be a torsion-free abelian group. A ring E is a graded division ring

(with grade group in Γ) if E has additive subgroups Eγ for γ ∈ Γ such that
E =

⊕

γ∈Γ Eγ and EγEδ ⊆ Eγ+δ for all γ, δ ∈ Γ, and each Eγ \ {0} lies in E∗,
the group of units of E. For background on graded division rings and proofs of
their properties mentioned here, see [5]. The grade group of E is

ΓE = {γ ∈ Γ | Eγ 6= {0} },

a subgroup of Γ. For a ∈ Eγ \ {0} we write deg(a) = γ. A significant property
is that E∗ =

⋃

γ∈ΓE
Eγ \ {0}, i.e., every unit of E is actually homogeneous (ΓE

torsion-free is needed for this). Thus, E is not a division ring if |ΓE| > 1. But,
E has no zero divisors (This also depends on having ΓE torsion-free). However,
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E0 is a division ring, and each Eγ (γ ∈ ΓE) is a 1-dimensional left- and right-
E0-vector space.

Let R = Z(E), the center of E, which is a graded subring of E. Indeed, R is
a graded field, i.e., a commutative graded division ring. Then E is a left (and
right) graded R-vector space, and we write [E : R] for dimR(E). E is a graded

central division algebra(GCDA) over R if [E : R] < ∞. There is a well-defined
group homomorphism

(1) θE : ΓE/ΓR → G(Z(E0)/R0) given by deg(a) + ΓR 7→ (z 7→ aza−1)

for all a ∈ E∗ and z ∈ Z(E0), where G(Z(E0)/R0) denotes the Galois group of
Z(E0) over R0. It is known that θE is surjective (cf. Prop. 2.3 of [5]).

A graded algebra A over a graded field R is said to be a graded central

simple algebra (GCSA) over R if A is a simple graded ring, [A : R] < ∞, and
Z(A) = R. There is a theory of GCSA’s over a graded field analogous to the
theory of central simple algebras (CSA’s) over a field (see Sec. 1 of [5]).

Let E be any GCDA over the graded field R, and let S be an unramified (or
inertial) graded field extension of R (i.e., ΓS = ΓR and S0 is separable over R0).
Then by Prop. 1.1 of [5], E ⊗R S is a GCSA over S and E ⊗R S = E ⊗R0

S0 as
S = S0 ⊗R0

R. Let G = G(Z(E0)/R0) and T = Z(E0)⊗R0
S0.

As Z(E0) is Galois over R0 by Prop. 2.3 of [5], T =
⊕k

i=1 Tei where ei’s are
the primitive idempotents of T and G acts transitively on ei’s (cf. the proof of
Prop. 18.18 in [7]). Let e = e1 and eσH = σ(e) where σH is the left coset of
H in G and H = stabG(e) which is the stabilizer group of e in G.

Theorem. Let E, R, S, G, T and H as above. Let E
′ be the GCDA over S

such that [E′]g = [E⊗R S]g in the graded Bauer group GBr(S) (see Sec. 3 of [5]
for the definition of GBr(S)). Then,

(a) Z(E′
0)

∼= Z(E0) · S0;
(b) E′

0 ∼ E0 ⊗Z(E0) (Z(E0) · S0) in Br(Z(E0) · S0);

(c) ΓE′/ΓR = θ−1
E

(G(Z(E0)/(Z(E0) ∩ S0)), where θE is the map of (1). So

ΓE′ ⊆ ΓE and |ΓE : ΓE′ | = [(Z(E0) ∩ S0) : R0];
(d) the following diagram is commutative:

ΓE′/ΓS

i
−−−−→ ΓE/ΓR

θE′





y

θE





y

G(Z(E′
0)/S0)

ρS0/R0−−−−→ G(Z(E0)/R0)

where θE is the map of (1), i is the inclusion map, and ρS0/R0
is restriction of

an automorphism from Z(E′
0)

∼= Z(E0) · S0 to Z(E0).

Proof. Let e and eσH be as above. Then [e(E ⊗R S)e]g = [E ⊗R S]g = [E′]g in
GBr(S). Since

(e(E⊗R S)e)0 = e(E0 ⊗R0
S0)e = e(E0 ⊗Z(E0) Z(E0)⊗R0

S0)e



UNRAMIFIED SCALAR EXTENSIONS OF GRADED DIVISION ALGEBRAS 25

= e(E0 ⊗Z(E0) (

k
⊕

i=1

eiT ))e = E0 ⊗Z(E0) eT

∼= E0 ⊗Z(E0) (Z(E0) · S0),

(e(E⊗R S)e)0 is simple. So, by Prop. 1.4(b) of [5], E′
0 ∼ E0 ⊗Z(E0) (Z(E0) · S0)

in Br(Z(E0) · S0), and Z(E′
0)

∼= Z(E0) · S0, and ΓE′ = Γe(E⊗RS)e ⊆ ΓE. Since
e(E ⊗R S)e = e(E ⊗R0

S0)e =
⊕

γ∈ΓE
e(Eγ ⊗R0

S0)e, and H = stabG(e) =

ρS0/R0
(G((Z(E0) · S0)/S0)) = G(Z(E0)/(Z(E0) ∩ S0)), it suffices to show that

e(Eγ ⊗R0
S0)e 6= 0 if and only if θE(γ +ΓR) ∈ H (So, ΓE′/ΓR = Γe(E⊗RS)e/ΓR =

θ−1
E

(H)). To show this, observe that T =
⊕

σH TeσH , where σH are the left
cosets ofH in G and eσH = σ(e), asG acts transitively on ei’s. Let a ∈ Eγ−(0),
and let τ = θE(γ + ΓR) ∈ G = G(Z(E0)/R0) = G(T/S0). Then τ is the
conjugation by a⊗ 1 on T = Z(E0)⊗R0

S0. So, (a⊗ 1)e(a⊗ 1)−1 = τ(e) = eτH .
(1) When τ = θE(γ + ΓR) ∈ H , i.e., γ + ΓR ∈ θ−1

E
(H), e(a⊗ 1)e(a⊗ 1)−1 =

eeτH = e. So, e(Eγ ⊗R0
S0)e 6= 0.

(2) When γ+ΓR 6∈ θ−1
E

(H), i.e., τ 6∈ H , Then for b =
∑n

i=1 ai⊗si ∈ Eγ⊗R0
S0,

where ai ∈ Eγ and si ∈ S0, ebe = e(
∑n

i=1(ai ⊗ 1)e(1⊗ si)) = e(
∑n

i=1 eτH(ai ⊗
si)) = eeτHb = 0. So, e(Eγ ⊗R0

S0)e = 0.
Let B = e(E ⊗R S)e. Then, as B0 is simple, by Cor. 2.3 of [8], θE′ = θB

where θB is the map defined in (2.5) of [8]. So, the commutativity of the above
diagram is followed. �

Now, we will use this theorem to prove the analogous theorem for tame
division algebras over a Henselian valued field.

Corollary (Theorem 3.1 of [6]). Let (F, v) be a Henselian valued field, and let

D be any tame CDA (central division algebra) over F . Let L be any inertial

extension field of F (i.e., [L : F ] = [L : F ] and L is separable over F ). Let DL

be the CDA over L with DL ∼ D ⊗F L in Br(L). Then,

(a) Z(DL) ∼= Z(D) · L;
(b) DL

∼= (D)Z(D)·L;

(c) ΓDL/ΓF = θ−1
D (G(Z(D)/(Z(D) ∩ L)), where θD is a well-defined group

homomorphism

(2) θD : ΓD/ΓF → G(Z(D)/F ) given by v(d) + ΓF 7→ (z 7→ dzd−1)

for all d ∈ D∗ and z ∈ Z(D). So ΓDL ⊆ ΓD and |ΓD : ΓDL | = [(Z(D)∩L) : F ];
(d) the following diagram is commutative:

ΓDL/ΓL
i

−−−−→ ΓD/ΓF

θDL





y

θD





y

G(Z(DL)/L)
ρL/F

−−−−→ G(Z(D)/F )

where θD is the map of (2), i is the inclusion map, and ρL0/F0
is restriction of

an automorphism from Z(DL) ∼= Z(D) · L to Z(D).
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Proof. Let GD and GF be the graded division algebra and the graded field
derived from D and F , respectively, as defined in Sec. 4 of [5]. Then GD
is a GCDA over GF by Prop. 4.3 of [5], and GL is unramified over GF as
ΓGL = ΓL = ΓF = ΓGF and (GL)0(= L) is separable over (GF )0(= F ) as
L is inertial over F . Also, GDL is the GCDA over GL such that [GDL]g =
[GD ⊗GF GL]g in GBr(GL) by Cor. 5.7 of [5]. So, by applying the above
theorem with E = GD, R = GF and S = GL,

(a) Z(DL) = Z((GDL)0) ∼= Z((GD)0) · (GL)0 = Z(D) · L.
(b) DL = (GDL)0 ∼ (GD)0⊗Z((GD)0)(Z((GD)0)·(GL)0) = D⊗Z(D)(Z(D)·

L). So, DL
∼= (D)Z((D)·L.

(c) Let θGD be the map of (1) with E = GD. Then, as θGD = θD, ΓDL/ΓF =
ΓGDL/ΓGF = θ−1

GD(G(Z(G((GD)0))/(Z(GD)0∩(GL)0)) = θ−1
D (G(Z(D)/(Z(D)

∩L)).
(d) It is clear that the commutative diagram of the theorem becomes the

above diagram. �
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