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CONSTRUCTIONS OF SEGAL ALGEBRAS IN L1(G) OF

LCA GROUPS G IN WHICH A GENERALIZED POISSON

SUMMATION FORMULA HOLDS

Jyunji Inoue and Sin-Ei Takahasi

Abstract. Let G be a non-discrete locally compact abelian group, and
µ be a transformable and translation bounded Radon measure on G. In

this paper, we construct a Segal algebra Sµ(G) in L1(G) such that the

generalized Poisson summation formula for µ holds for all f ∈ Sµ(G), for
all x ∈ G. For the definitions of transformable and translation bounded

Radon measures and the generalized Poisson summation formula, we refer
to L. Argabright and J. Gil de Lamadrid’s monograph in 1974.

1. Preliminaries

In this paper, G denotes a non-discrete LCA group with the dual group Γ,
and L1(G) and M(G) the group algebra and the usual measure algebra with
convolution “ ∗ ” as multiplication, respectively. Haar measures dx on G, and
dγ on Γ are chosen so that dγ is the Plancherel measure corresponding to dx.
K(G) denotes the family of all compact subsets of G,Cc(G) the space consisting
of all continuous functions on G with compact supports. Cc,2(G) is the linear
subspace of Cc(G) generated by {f ∗ g : f, g ∈ Cc(G)}, which forms a dense
subspace of L1(G). M(G) is the space of all Radon measures on G. The symbols

f̂ and µ̂ for f ∈ L1(G) and µ ∈ M(G) express the Fourier transform and the
Fourier-Stieltjes transform of f and µ, respectively:

f̂(γ) =

∫
G

(−x, γ)f(x)dx and µ̂(γ) =

∫
G

(−x, γ)dµ(x) (γ ∈ Γ).

We also use symbol: f̌(γ) =
∫
G

(x, γ)f(x)dx = f̂(−γ). For a function f on G
and y ∈ G, fy denotes the translation of f by y, that is, fy(x) = f(x− y) (x ∈
G), and also f∗(x) = f(−x), µ′(x) = µ(−x) (x ∈ G).
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Definition 1 ([1, p. 8, (2.1)]). A measure µ ∈ M(G) is said to be transformable
if there exists µ̂ ∈ M(Γ) which satisfies

(1) f̌ ∈ L2(µ̂) and

∫
G

f ∗ f∗(x)dµ(x) =

∫
Γ

|f̌(γ)|2dµ̂(γ) (f ∈ Cc(G)).

(1) implies ([1, p. 8, (2.2)])

(2) ǧ ∈ L1(µ̂) and

∫
G

g(x)dµ(x) =

∫
Γ

ǧ(γ)dµ̂(γ) (g ∈ Cc,2(G)).

Remark 1. It is easy to see that (2) implies (1). Therefore µ ∈ M(G) is trans-
formable if and only if there exists a measure µ̂ ∈ M(Γ) which satisfies (2).

The measure µ̂ in (1) is called the Fourier transform of µ. The set of all
transformable measures in M(G) is denoted by MT (G) ([1, p. 8]). For µ ∈
MT (G), it may happen that µ̂ ∈ MT (Γ). In this case, the inversion formula
ˇ̂µ = µ holds ([1, Theorem 3.4]). We put I (G) = {µ ∈ MT (G) : µ̂ ∈ MT (Γ)}
([1, p. 21]).

A remarkable property of µ ∈ M(G), which is essentially important in this
paper, is the translation boundedness.

Definition 2 ([1, p. 5]). A measure µ ∈ M(G) is said to be translation bounded
if for every K ∈ K(G), mµ(K) := supy∈G |µ|(K + y) < ∞ holds, where |µ| is
the total variation measure of µ. The set of all translation bounded measures
on G will be denoted by MB(G).

Definition 3 ([2, p. 5]). µ ∈ M(G) is said to be shift-bounded if f ∗µ ∈ Cb(G)
holds for every f ∈ Cc(G).

Definition 4 ([3, p. 16]). A subspace S of L1(G) is called a Segal algebra if
the following conditions are satisfied:

(i) The space S is dense in L1(G) in the norm topology of L1(G);
(ii) S is a Banach space under some norm ‖ ‖S which dominates ‖ ‖1;
(iii) For each f ∈ S and x ∈ G, fx ∈ S with ‖fx‖S = ‖f‖S ;
(iv) For each f ∈ S and ε > 0, there is a neighborhood U of 0 ∈ G such that

‖f − fx‖S < ε (x ∈ U).

For the basic facts and notations, we refer to [5] and for Segal algebras we
refer to [3, 4].

Definition 5. Let µ ∈ MT (G) ∩MB(G). Define

Sµ(G)=

{
f ∈L1(G) : ‖|f | ∗ |µ|‖∞ <∞, lim

y→0
‖|f − fy| ∗ |µ|‖∞=0, f̂ ∈ L1(µ̂)

}
,

‖f‖µ = ‖f‖1 + ‖|f | ∗ |µ|‖∞ + ‖f̂‖L1(µ̂) (f ∈ Sµ(G)),

where ‖|f | ∗ |µ|‖∞ = supy∈G ‖f‖L1(µ′y). It is easy to see that (Sµ(G), ‖ ‖µ) is a

normed linear space.
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In 1974, L. Argabright and J. Gil de Lamadrid introduced in [1] the notion of
transformable Radon measures, and proved a generalized Poisson summation
formula: Let µ ∈ MT (G), and suppose that f ∈ L1(G) is convolvable with µ

and f̂ ∈ L1(µ̂). Then, for locally almost all x ∈ G, the following equality holds:∫
G

f(x− y)dµ(y) =

∫
Γ

(x, γ)f̂(γ)dµ̂(γ).

Furthermore, for any u ∈ G such that the first integral in the above represents
a continuous function of x in a neighborhood of u, the formula is valid for
x = u. In the case where G = Rd and µ = mZd , the counting measure on Zd,
the formula reduces to the Poisson summation formula.

The contents of this paper: In §2, lemmas for the theorems in §3 are given.
In §3, we construct, for each µ ∈ MT (G) ∩ MB(G), a Segal algebra Sµ(G)
such that for all f ∈ Sµ(G) and for all x ∈ G, the above generalized Poisson
summation formula holds (Theorem 1). Then a characterization theorem for
elements in I (G), and its corollaries are given. In §4, we exhibit some concrete
examples for Theorem 1.

2. Lemmas

Lemma 1. For µ ∈ M(G), µ is translation bounded if and only if µ is shift-
bounded.

Proof. Suppose that µ is translation bounded, and let f ∈ Cc(G) be arbitrary.
Put K := supp(f). Then

‖f ∗ µ‖∞ = sup
x∈G

∣∣∣∣∫
G

f(x− y)dµ(y)

∣∣∣∣ ≤ sup
x∈G

∫
G

|f(x− y)|d|µ|(y)

= sup
x∈G

∫
x−K

|f(x− y)|d|µ|(y) ≤ sup
x∈G
‖f‖∞|µ|(x−K)

= ‖f‖∞mµ(−K) <∞.
Hence µ is shift-bounded.

Conversely, suppose that µ is shift-bounded. Then |µ| is shift-bounded ([2,
Proposition 1.12]), and let K ∈ K(G) be arbitrary. Choose f ∈ Cc(G) such
that 0 ≤ f ≤ 1 with f(x) = 1 (x ∈ −K). Then

mµ(K) = sup
x∈G
|µ|(K + x) ≤ sup

x∈G

∫
G

f(x− y)d|µ|(y)

= sup
x∈G

f ∗ |µ|(x) = ‖f ∗ |µ|‖∞ <∞.

Hence µ is translation bounded. �

Lemma 2. Cc,2(G) ⊂ Sµ(G).

Proof. Suppose f ∈ Cc,2(G). Then
∫

Γ
|f̂(γ)|d|µ̂|(γ) < ∞ follows from (2) and

‖|f | ∗ |µ|‖∞ < ∞ follows from Lemma 1. Let ε > 0 be given. Let K =
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supp(f) and let U be a compact neighborhood of 0 ∈ G such that ‖f −fy‖∞ <
ε

2mµ(−K) (y ∈ U). Then

‖|f − fy| ∗ |µ|‖∞ ≤ ‖f − fy‖∞mµ(−supp(f − fy))

≤ ε

2mµ(−K)
mµ(−(K ∪ (K + y))) ≤ ε (y ∈ U).

�

Lemma 3. Let {fn}∞n=1 be a Cauchy sequence in (Sµ(G), ‖ ‖µ). Then there
exists f ∈ Sµ(G) such that ‖f − fn‖µ → 0 (n→∞).

Proof. We can suppose without loss of generality that ‖fn − fn−1‖µ ≤ 1
n2 ,

1 ≤ n, f0 = 0. Let Fn := fn − fn−1, n = 1, 2, 3, . . .. We readily know that
there exists f ∈ L1(G) such that

(3) f(x) = lim
n→∞

fn(x)(dx− a.e.), and ‖f − fn‖1 → 0 (n→∞).

Further we have

‖|f | ∗ |µ|‖∞ ≤ ‖
∣∣ ∞∑
n=1

Fn
∣∣ ∗ |µ|‖∞(4)

≤
∞∑
n=1

‖|Fn| ∗ |µ|‖∞ ≤
∞∑
n=1

1

n2
<∞,

‖|f − fn| ∗ |µ|‖∞ ≤ ‖
∣∣ ∞∑
k=n+1

Fk
∣∣ ∗ |µ|‖∞(5)

≤
∞∑

k=n+1

‖|Fk| ∗ |µ|‖∞ ≤
∞∑

k=n+1

1

k2
→ 0 (n→∞),

∫
Γ

|f̂(γ)|d|µ̂|(γ)|dγ =

∫
Γ

∣∣∣∣ ∞∑
n=1

F̂n(γ)

∣∣∣∣d|µ̂|(γ)(6)

≤
∞∑
n=1

∫
Γ

|F̂n(γ)|d|µ̂|(γ) ≤
∞∑
n=1

1

n2
<∞,

∫
Γ

∣∣∣∣f̂ − fn(γ)

∣∣∣∣d|µ̂|(γ) ≤
∞∑

k=n+1

∫
Γ

|F̂k(γ)|d|µ̂|(γ)(7)

≤
∞∑

k=n+1

1

k2
→ 0 (n→∞).

To show limy→0 ‖|f − fy| ∗ |µ|‖∞ = 0, let ε > 0 be given. Choose N ∈ N such
that ‖|f − fN | ∗ |µ|‖∞ ≤ ε/4. Let U be a neighborhood of 0 ∈ G such that
‖|fN − (fN )y| ∗ |µ|‖∞ < ε/2 (y ∈ U). Then

‖|f − fy| ∗ |µ|‖∞ ≤ ‖|f − fN | ∗ |µ|‖∞ + ‖|fN − (fN )y| ∗ |µ|‖∞
+ ‖fy − (fN )y| ∗ |µ|‖∞ ≤ ε (y ∈ U).(8)
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Therefore f ∈ Sµ(G) by (4), (6) and (8), and ‖f − fn‖µ → 0(n → ∞) by (3),
(5) and (7). �

3. Main results

Theorem 1. Let µ ∈ MT (G) ∩MB(G). Then we have
(i) (Sµ(G), ‖ ‖µ) is a Segal algebra.
(ii) Cc,2(G) is a dense subspace of Sµ(G).
(iii) For all f ∈ Sµ(G) and all x ∈ G, the generalized Poisson summation

formula holds (cf. [1, Theorem 3.3]):

(9)

∫
G

f(x− y)dµ(y) =

∫
Γ

(x, γ)f̂(γ)dµ̂(γ).

Proof. (i) By Lemma 3, Sµ(G) is a Banach space, and ‖ ‖1 ≤ ‖ ‖µ is clear. For
f ∈ Sµ(G) and y ∈ G, we readily know fy ∈ Sµ(G) and

‖fy‖µ = ‖fy‖1 + ‖|fy| ∗ |µ|‖∞ + ‖(−y, γ)f̂‖L1(µ̂)

= ‖f‖1 + ‖|f | ∗ |µ|‖∞ + ‖f̂‖L1(µ̂) = ‖f‖µ.

Further, let f ∈ Sµ(G) and ε > 0 be given arbitrarily. We can choose a
neighborhood U of 0 ∈ G such that

‖f − fy‖1 ≤ ε/3 (y ∈ U),

‖|f − fy| ∗ |µ|‖∞ ≤ ε/3 (y ∈ U),

‖f̂ − f̂y‖L1(µ̂) = ‖f̂ − (−y, γ)f̂‖L1(µ̂) ≤ ε/3 (y ∈ U).

Therefore we have

‖f − fy‖µ = ‖f − fy‖1 + ‖|f − fy| ∗ |µ|‖∞ + ‖f̂ − f̂y‖L1(µ̂) ≤ ε (y ∈ U).

Since Sµ(G) contains Cc,2(G) by Lemma 2 which is a dense subspace of L1(G),
it follows that Sµ(G) is a dense subspace of L1(G). Hence (Sµ(G), ‖ ‖µ) is a
Segal algebra.

(ii) Let I be the closure of Cc,2(G) in Sµ(G). Then I is an ideal of Sµ(G).
Indeed, for any f ∈ I and g ∈ Sµ(G), we can choose sequences {fn}, {gn} in
Cc,2(G) such that ‖f − fn‖µ → 0 (n→∞), ‖g − gn‖1 → 0 (n→∞). Then we
have (see [3, §4, Proposition 1])

‖f ∗ g − fn ∗ gn‖µ ≤ ‖f − fn‖µ‖g‖1 + ‖fn‖µ‖g − gn‖1 → 0 (n→∞),

so f ∗ g ∈ I. By an ideal theorem for Segal algebras (cf. [4, Theorem 6.2.9]),
I = Ī ∩ Sµ(G). Since Ī = L1(G), we have I = Sµ(G), that is, Cc,2(G) is a
dense subspace of Sµ(G).

(iii) Let f ∈ Sµ(G) and y ∈ G be given. By (ii), we can choose a sequence
{fn}∞n=1 ⊂ Cc,2(G) such that ‖f − fn‖µ → 0 (n→∞). It follows that

(10)

∣∣∣∣∫
G

f(y − x)dµ(x)−
∫
G

fn(y − x)dµ(x)

∣∣∣∣ ≤ ‖f − fn‖µ → 0 (n→∞)
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and

(11)

∣∣∣∣∫
Γ

(y, γ)f̂(γ)dµ̂(γ)−
∫

Γ

(y, γ)f̂n(γ)dµ̂(γ)

∣∣∣∣ ≤ ‖f − fn‖µ → 0 (n→∞).

Since fn(x) (hence (fn(x− y), y ∈ G) ∈ Cc,2(G), n = 1, 2, 3, . . ., we have from
(2)

(12)

∫
G

fn(y − x)dµ(x) =

∫
Γ

(y, γ)f̂n(γ)dµ̂(γ).

By (10), (11) and (12), the desired equality (9) follows. �

Theorem 2. MT (G) ∩MB(G) = I (G).

Proof. ⊇ : Suppose µ ∈ I(G). Then µ ∈ MT (G) and µ̂ ∈ MT (Γ) with µ′ = ˆ̂µ
by [1, Theorem 3.4], and we have µ′ ∈ MB(G) by [1, Theorem 2.5], and hence
µ ∈ MB(G).
⊆ : Suppose µ ∈ MT (G) ∩ MB(G), and let h ∈ Cc(Γ) be given arbitrarily.

Since ‖ĥ‖2 = ‖h‖2 <∞, we have

(13) ĥ ∗ h∗ = |ĥ|2 ∈ L1(G).

From (13) and the inversion theorem, we have

(14) h ∗ h∗(γ) =

∫
G

(x, γ)|ĥ|2(x)dx =

∫
G

(−x, γ)|ȟ(x)|2dx (γ ∈ Γ).

(14) shows that the Fourier transform of |ȟ|2 has compact support, and by
[4, Proposition 6.2.5] (see also [3, §5, Examples (vii)]), |ȟ|2 belongs to Sµ(G).
By (9) and (14), it follows that

(15)

∫
G

|ȟ(x)|2dµ′(x) =

∫
G

|ȟ(−x)|2dµ(x) =

∫
Γ

h ∗ h∗(γ)dµ̂(γ).

The definition of the transformable measures and (15) imply µ̂ ∈ MT (Γ)
with its Fourier transform µ′, that is, µ ∈ I (G) with ˇ̂µ = µ. �

Definition 6 ([1, p. 39]). Let H be a closed subgroup of G, and let µ ∈ M(H).
We can consider µ as a measure in M(G) whose support is contained in H.
In this case we express it by ιµ ∈ M(G). A measure ν ∈ M(G) is called H-
invariant if ν ∗ δh = ν for every element h ∈ H. We denote by MH(G) the set
of all H-invariant measures in M(G).

Obviously, in the case where ν(6= 0) is concentrated in H, ν is H-invariant
if and only if ν|H is a Haar measure of H.

A measure µ ∈ M(G) is called periodic if G/I is compact, where I is the
closed subgroup consisting of all x ∈ G satisfying δx ∗ µ = µ.

Corollary 1. Every periodic measure is contained in I (G).
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Proof. Suppose that µ ∈ M(G) is a periodic measure. By [1, Corollary 6.1], µ
belongs to MT (G). Since µ is periodic, there exists a closed subgroup I of G
such that the quotient group G/I is compact and δx∗µ = µ for all x ∈ I. There
exists a compact subset H of G such that H + I = G. Hence for any x ∈ G,
there exist h ∈ H and y ∈ I such that x = h+ y. Then for any K ∈ K(G), we
have

|µ|(K + x) = |µ|(K + h+ y) ≤ |µ|(K +H + y)

= |µ| ∗ δ−y(K +H) = |µ|(K +H) <∞,

that is, µ ∈ MB(G). Hence we have µ ∈ I (G) from Theorem 2. �

A measure µ ∈ M(G) is called positive definite if
∫
G
f ∗ f∗(x)dµ(x) ≥ 0 for

all f ∈ Cc(G) ([1, p. 23)]). It is known that every positive definite measure is
transformable, but not necessarily translation bounded ([1, Theorem 4.1 and
Proposition 7.1]). Therefore the next corollary is an immediate consequence of
Theorem 2.

Corollary 2. A positive definite measure µ ∈ M(G) belongs to I (G) if and
only if it is translation bounded.

Theorem 3. Let H be a closed subgroup of G, and let µ ∈ M(H). Then, µ
belongs to I (H) if and only if ιµ belongs to I (G).

Proof. Suppose µ ∈ I (H). Then ιµ ∈ MT (G) by [1, Theorem 6.2]. On the
other hand, since µ ∈ MB(H), µ is shift-bounded by Lemma 1, and by [2,
Proposition 1.16] ιµ is shift-bounded. By Lemma 1 again, ιµ ∈ MB(G). Hence
ιµ ∈ I (G) by Theorem 2.

Conversely, suppose ιµ ∈ I (G). Then ι̂µ ∈ I (Γ) which is H⊥-invariant
([1, Proposition 6.1]). For each η ∈ Cc(Γ) define Tη ∈ Cc(Γ/H⊥) by

Tη(γ̇) =

∫
H⊥

η(γ + γ′)dγ′ (γ̇ = γ +H⊥ ∈ Γ/H⊥).

There exists an isomorphism ν → ν̇ from MH⊥(Γ) onto M(Γ/H⊥) defined by
the so called generalized Weil formula (cf. [1, p. 40, (6.2)])

(16)

∫
Γ

η(γ)dν(γ) =

∫
Γ/H⊥

Tη(γ̇)dν̇(γ̇) (η ∈ Cc(Γ)).

By [1, Theorem 6.1], ˙̂ιµ ∈ MT (Γ/H⊥) which satisfies

(17) ̂̂ιµ = ι
̂̂̇
ιµ.

On the other hand, since ιµ ∈ I (G), we have from [1, Theorem 3.4]

(18) (ιµ)′ = ̂̂ιµ.
From (17) and (18), we have

(19) ιµ′ = (ιµ)′ = ι
̂̂̇
ιµ, that is, µ′ =

̂̂̇
ιµ.
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Next, we show that ˙̂ιµ ∈ MB(Γ/H⊥). Since ι̂µ ∈ MB(Γ), it is shift-bounded
by Lemma 1. If η ∈ Cc(Γ) and γ1 ∈ Γ, we have from (16)∫

Γ

η(γ1 − γ)dι̂µ(γ) =

∫
Γ

η′γ1(γ)dι̂µ(γ) =

∫
Γ/H⊥

(Tη′γ1)(γ̇)d ˙̂ιµ(γ̇)

=

∫
Γ/H⊥

(∫
H⊥

η(γ1 − γ + γ′)dγ′
)
d ˙̂ιµ(γ̇) =

∫
Γ/H⊥

(Tη)(γ̇1 − γ̇)d ˙̂ιµ(γ̇),

and hence

‖(Tη) ∗ ˙̂ιµ‖∞ = sup
γ̇1∈Γ/H⊥

∣∣∣∣∫
Γ/H⊥

(Tη)(γ̇1 − γ̇)d ˙̂ιµ(γ̇)

∣∣∣∣
= sup
γ1∈Γ

∣∣∣∣∫
Γ

η(γ1 − γ)dι̂µ(γ)

∣∣∣∣ = ‖η ∗ ι̂µ‖∞ <∞ (η ∈ Cc(Γ)).(20)

Since T maps Cc(Γ) onto Cc(Γ/H
⊥) ([1, p. 40]), it follows from (20) that ˙̂ιµ

is shift-bounded, and by Lemma 1, ˙̂ιµ ∈ MB(Γ/H⊥). Thus, by Theorem 2,

we have ˙̂ιµ ∈ I (Γ/H⊥). Therefore, from the last equation in (19), we have
µ′ ∈ I (H), which implies µ ∈ I (H). �

Remark 2. Let H be a closed subgroup of G, mH ∈ M(H) be a fixed Haar
measure of H. There exists a Haar measure mH⊥ of H⊥ such that ιmH⊥ =
ι̂mH ([1, Proposition 6.2]). More precisely, mH⊥ is the Plancherel measure

corresponding to λ̇ ([1, Corollary 6.2]), where λ = dx and λ̇ is a measure in
M(G/H) determined by the formula

Tf(ẋ) =

∫
H

f(x+ h)dh (x ∈ G),∫
G

f(x)dλ(x) =

∫
G/H

Tf(ẋ)dλ̇(ẋ) (f ∈ Cc(G)).

This remark will be used in Examples II and III in the next section.

4. Examples

Example I. By applying Theorem 1 to several “µ”s in M(G)(⊂ I (G)), we
have the following formulas:

(a) f(x) =
∫

Γ
(x, γ)f̂(γ)dγ (f ∈ L1(G) ∩ C0(G), f̂ ∈ L1(Γ)),

µ = δ0, µ̂ = dγ: the inversion theorem.

(b) 1√
2π

∫
R f(x− y)e−

1
2y

2

dy = 1√
2π

∫
R̂ e

ixtf̂(t)e−
1
2 t

2

dt (f ∈ L1(R), x ∈ R),

µ = e−
1
2x

2

dx, µ̂ = e−
1
2 t

2

dt: formula for Gaussian transform.

(c) 1√
2π

∫
R f(x− y) a

π(a2+y2)dy = 1
2π

∫
R̂ e

itxf̂(t)e−a|t|dt (f ∈ L1(R), x ∈ R),

µ = a
π(a2+x2)dx, µ̂ = 1√

2π
e−a|t|dt, a > 0: formula for Cauchy distribu-

tion.
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Although all the formulas above are immediate consequences of [1, Theorem
3.3], Theorem 1 may be of some help to visualize the abundance of the gener-
alized Poisson summation formula introduced by L. Argabright and J. Gil de
Lamadrid.

Example II. Rd denotes the d-dimensional real group and Zd is its subgroup
consisting of elements with integer coordinates. R̂d denotes the dual group of
Rd and Ẑd is its subgroup consisting of elements with integer coordinates:

Ẑd = {(m1, . . . ,md) : mk ∈ Ẑ, k = 1, . . . , d} and

((x1, . . . , xd), (t1, . . . , td)) = e
∑d
k=1 ixktk

(
(x1, . . . , xd) ∈ Rd; (t1, . . . , td) ∈ R̂d

)
.

We fix the Haar measure λ = 1
(2π)d/2

dx1 · · · dxd on Rd, and fix the counting

measure ω = mZ on Zd. Then the Haar measure on Rd/Zd corresponding to ω

is λ̇ = 1
(2π)d/2

dẋ1 · · · dẋd, where dẋ1 · · · dẋd is the Lebesgue measure on Rd/Zd.
It is easy to see that Z⊥ = (2πẐ)d, which is the dual group of Rd/Zd, and the

Plancherel measure on (2πẐ)d corresponding to λ̇ is (2π)d/2m(2πẐ)d . Therefore,

by Remark 2, it follows that ι̂mZd = ι(2π)d/2m(2πẐ)d . By applying Theorem 1,

we have the following:

SιmZd
(Rd) :=

{
f ∈ L1(Rd) : sup

y∈Rd

∑
n∈Zd

|f(y − n)| <∞,

lim
x→0

sup
y∈Rd

∑
n∈Zd

|f(x+ y − n)− f(y − n)| = 0,

∑
(m1,...,md)∈Ẑd

|f̂(2πm1, . . . , 2πmd)| <∞
}
,

with norm

‖f‖ιmZd
= ‖f‖1 + sup

y∈Rd

∑
n∈Zd

∣∣f(y − n)
∣∣

+ (2π)
d
2

∑
(m1,...,md)∈Ẑd

|f̂(2πm1, . . . , 2πmd)| (f ∈ SιmZd
(Rd))

is a Segal algebra, and for all f ∈ SιmZd
(Rd) and for all x = (x1, . . . , xd) ∈ Rd,

the Poisson summation formula holds:∑
n∈Zd

f(x− n) = (2π)
d
2

∑
(m1,...,md)∈Ẑd

e
∑d
k=1 2πixkmk f̂(2πm1, . . . , 2πmd).

Example III. Let G = Rn be the n-dimensional real group with the dual group
R̂n, and let 0 < m < n. We fix a Haar measure on Rn: λ = 1

(2π)n/2
dx1 · · · dxn.

Let

H =
{

(x1, . . . , xm, xm+1, . . . , xn) ∈ Rn : xm+1 = · · · = xn = 0
}

(∼= Rm)
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be a closed subgroup of Rn with the annihilator

H⊥ =
{

(t1, . . . , tm, tm+1, . . . , tn) ∈ R̂n : t1 = · · · = tm = 0
}

(∼= R̂n−m).

We fix a Haar measure ω = 1
(2π)m/2

dx1 · · · dxm on H. Then ιω ∈ MT (Rn) ∩
MB(Rn) by Theorem 3. Obviously,

Rn/H = Rn−m and λ̇ =
1

(2π)(n−m)/2
dxm+1 · · · dxn.

Also H⊥ ∼= R̂n/H ∼= R̂n−m. Then the Plancherel measure corresponding to λ̇
is ω̃ = 1

(2π)(n−m)/2 dtm+1 · · · dtn and, by Remark 2, ι̂ω = ιω̃ follows.

By Theorem 1, we have the following:

Sιω(Rn) =

{
f ∈ L1(Rn) : ‖|f | ∗ ιω‖∞ <∞, lim

y→0
‖|f − fy| ∗ ιω‖∞ = 0,∫

H⊥
|f̂(0, . . . , 0, tm+1, . . . , tn)| 1

(2π)(n−m)/2
dtm+1 · · · dtn <∞

}
,

with norm

‖f‖ιω
= ‖f‖1 + ‖|f | ∗ (ιω)‖∞

+

∫
H⊥
|f̂(0, . . . , 0, tm+1, . . . , tn)| 1

(2π)(n−m)/2
dtm+1 · · · dtn (f ∈ Sιω(Rn))

is a Segal algebra, and for all f ∈ Sιω(Rn) and for all (x1, . . . , xn) ∈ Rn, the
generalized Poisson summation formula for ιω holds:

∫
H

f(x1 − y1, . . . , xm − ym, xm+1, . . . , xn)
1

(2π)m/2
dy1 · · · dym

(21)

=

∫
H⊥

ei(xm+1tm+1+···+xntn)f̂(0, . . . , 0, tm+1, . . . , tn)
1

(2π)(n−m)/2
dtm+1 · · · dtn.

Remark 3. Of course, the equation (21) is not new, since it an immediate
consequence of [1, Theorem 3.3].

Acknowledgments. Authors express deep thanks to a reviewer of the paper.
With his suitable comments, queries and advices, the paper has drastically
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