• 제목/요약/키워드: B-operator

검색결과 609건 처리시간 0.032초

STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$

  • Ryu, K.-S;Yoo, S.-C
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.791-802
    • /
    • 2000
  • In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8]. In this paper, we will prove the stability theorems of the operator-valued function space integral over paths in abstract Wiener space $C_0(B)$.

  • PDF

NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BY (p, q)-DERIVATIVE OPERATOR

  • Motamednezhad, Ahmad;Salehian, Safa
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.381-390
    • /
    • 2019
  • In this paper, we introduce interesting subclasses ${\mathcal{H}}^{p,q,{\beta},{\alpha}}_{{\sigma}B}$ and ${\mathcal{H}}^{p,q,{\beta}}_{{\sigma}B}({\gamma})$ of bi-univalent functions by (p, q)-derivative operator. Furthermore, we find upper bounds for the second and third coefficients for functions in these subclasses. The results presented in this paper would generalize and improve some recent works of several earlier authors.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

ON THE WEAKLY COMPACT WEIGHTED OPERATORS ON $C_b(X)$

  • Lee, Joung-Nam
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.423-427
    • /
    • 2004
  • For any completely regular Hausdorff space weighted operator on $C_{b}(X)$ is not necessarily compact. In this paper we find both necessary and sufficient conditions for a weighted operator on $C_{b}(X)$ to be compact. And known results in $uC_{\Phi}$ are shown to emerge as special cases.

훼손된 영상에서의 연산자 적응 특성 분석 I : 가우시안으로 흐려지고 20dB 잡음이 추가된 훼손된 영상 (Analysis I of Operator Adaptive Characteristic in the Noisy-Blurred Images: Gaussian blurred and additive 20dB noise)

  • 전우상;한군희
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1685-1692
    • /
    • 2010
  • 정칙화 반복처리 과정에 사용되는 정칙화 연산자는 라플라시안 연산자를 주로 사용하고 있으나, 일반적으로 미분 연산자를 사용하게 되어있다. 본 논문에서는 정칙화 연산자로서의 일반적인 미분연산자들과 제안된 연산자의 성능을 비교, 검토하여 분석하였다. 가우시안에 의해 훼손된 영상에서는, 윤곽부분은 제안된 연산자가 기존에 사용된 연산자보다 수렴성 및 복원효과가 뛰어나며 평면부분에서는 기존의 연산자가 제안된 연산자보다 안정적으로 수렴함을 알 수 있었다. 정칙화 이론은 잡음의 평활화와 윤곽의 복원을 동시에 고려하여 처리하기 때문에 영역을 평면부분과 중간부분 그리고 윤곽부분으로 나누어서 처리결과를 비교하였다.

AN IDENTITY ON STANDARD OPERATOR ALGEBRA

  • SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.1129-1135
    • /
    • 2022
  • The purpose of this research is to find an extension of the renowned Chernoff theorem on standard operator algebra. Infact, we prove the following result: Let H be a real (or complex) Banach space and 𝓛(H) be the algebra of bounded linear operators on H. Let 𝓐(H) ⊂ 𝓛(H) be a standard operator algebra. Suppose that D : 𝓐(H) → 𝓛(H) is a linear mapping satisfying the relation D(AnBn) = D(An)Bn + AnD(Bn) for all A, B ∈ 𝓐(H). Then D is a linear derivation on 𝓐(H). In particular, D is continuous. We also present the limitations on such identity by an example.

NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY

  • Baharak Moosavi;Mohsen Shah Hosseini
    • 호남수학학술지
    • /
    • 제45권1호
    • /
    • pp.123-129
    • /
    • 2023
  • In this paper, we introduce the reverse of the operator Davis-Choi-Jensen's inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if $A,\;B{\in}{\mathcal{B}}({\mathcal{H}})$ are self-adjoint operators with the spectra contained in the interval [m, M] with m < M and A ≤ B, then for any $r{\geq}{\frac{1}{t}}>1,\,t{\in}(0,\,1)$ $A^r{\leq}({\frac{M1_{\mathcal{H}}-A}{M-m}}m^{rt}+{\frac{A-m1_{\mathcal{H}}}{M-m}}M^{rt}){^{\frac{1}{t}}}{\leq}K(m,\;M,\;r)B^r,$ where K (m, M, r) is the generalized Kantorovich constant.

QUANTITATIVE WEIGHTED BOUNDS FOR THE VECTOR-VALUED SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

  • Hu, Guoen
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1791-1809
    • /
    • 2018
  • Let T be the singular integral operator with nonsmooth kernel which was introduced by Duong and McIntosh, and $T_q(q{\in}(1,{\infty}))$ be the vector-valued operator defined by $T_qf(x)=({\sum}_{k=1}^{\infty}{\mid}T\;f_k(x){\mid}^q)^{1/q}$. In this paper, by proving certain weak type endpoint estimate of L log L type for the grand maximal operator of T, the author establishes some quantitative weighted bounds for $T_q$ and the corresponding vector-valued maximal singular integral operator.