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QUANTITATIVE WEIGHTED BOUNDS FOR THE

VECTOR-VALUED SINGULAR INTEGRAL OPERATORS

WITH NONSMOOTH KERNELS

Guoen Hu

Abstract. Let T be the singular integral operator with nonsmooth ker-
nel which was introduced by Duong and McIntosh, and Tq (q ∈ (1, ∞))

be the vector-valued operator defined by Tqf(x) =
(∑∞

k=1 |Tfk(x)|q
)1/q

.

In this paper, by proving certain weak type endpoint estimate of L logL
type for the grand maximal operator of T , the author establishes some

quantitative weighted bounds for Tq and the corresponding vector-valued

maximal singular integral operator.

1. Introduction

We will work on Rn, n ≥ 1. Let Ap(Rn) (p ∈ [1, ∞)) be the weight func-
tions class of Muckenhoupt, that is, w ∈ Ap(Rn) if w is nonnegative, locally
integrable and the Ap(Rn) constant [w]Ap is finite, where

[w]Ap := sup
Q

( 1

|Q|

∫
Q

w(x)dx
)( 1

|Q|

∫
Q

w−
1
p−1 (x)dx

)p−1

, p ∈ (1, ∞),

the supremum is taken over all cubes in Rn, and

[w]A1
:= sup

x∈Rn

Mw(x)

w(x)
.

For properties of Ap(Rn), we refer the reader to the monograph [8]. In the last
several years, there has been significant progress in the study of sharp weighted
bounds with Ap weights for the classical operators in Harmonic Analysis. The
study was begun by Buckley [1], who proved that if p ∈ (1, ∞) and w ∈ Ap(Rn),
then the Hardy-Littlewood maximal operator M satisfies

‖Mf‖Lp(Rn, w) .n, p [w]
1
p−1

Ap
‖f‖Lp(Rn, w).(1.1)
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Moreover, the estimate (1.1) is sharp since the exponent 1/(p− 1) can not be
replaced by a smaller one. Hytönen and Pérez [13] improved the estimate (1.1),
and showed that

‖Mf‖Lp(Rn, w) .n, p
(
[w]Ap [w−

1
p−1 ]A∞

) 1
p ‖f‖Lp(Rn, w),(1.2)

where and in the following, for a weight u ∈ A∞(Rn) = ∪p≥1Ap(Rn), [u]A∞ is
the A∞ constant of u, defined by

[u]A∞ = sup
Q⊂Rn

1

u(Q)

∫
Q

M(uχQ)(x)dx,

see [25]. It is obvious that (1.2) is more subtle than (1.1).
The sharp dependence of the weighted estimates of singular integral opera-

tors in terms of the Ap(Rn) constant was first considered by Petermichl [22,23],
who solved this question for Hilbert transform and Riesz transform. Hytönen
[11] proved that for a Calderón-Zygmund operator T and w ∈ A2(Rn),

‖Tf‖L2(Rn, w) .n [w]A2
‖f‖L2(Rn, w).(1.3)

This solved the so-called A2 conjecture. Combining the estimate (1.3) and the
extrapolation theorem in [5], we know that for a Calderón-Zygmund operator
T , p ∈ (1, ∞) and w ∈ Ap(Rn),

‖Tf‖Lp(Rn, w) .n, p [w]
max{1, 1

p−1}
Ap

‖f‖Lp(Rn, w).(1.4)

In [17], Lerner gave a very simple proof of (1.4) by controlling the Calderón-
Zygmund operator using sparse operators. For other recent works about the
quantitative weighted bounds for singular integral operators, see [9, 12–14, 18]
and the related references therein.

Let T be an L2(Rn) bounded linear operator with kernel K in the sense that
for all f ∈ L2(Rn) with compact support and a.e. x ∈ Rn\supp f ,

Tf(x) =

∫
Rn
K(x, y)f(y)dy,(1.5)

where K is a locally integrable function on Rn × Rn\{(x, y) : x = y}. To
obtain a weak (1, 1) estimate for certain Riesz transforms, and Lp boundedness
with p ∈ (1, ∞) of holomorphic functional calculi of linear elliptic operators
on irregular domains, Duong and McIntosh [6] introduced singular integral
operators with nonsmooth kernels via the following generalized approximation
to the identity.

Definition 1.1. Let h be a positive, bounded and decreasing function such
that for some constant η > 0,

lim
r→∞

rn+ηh(r) = 0,(1.6)
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{at}t>0 be a family of functions in Rn × Rn such that for all x, y ∈ Rn and
t > 0,

|at(x, y)| ≤ ht(x, y) = t−n/sh
( |x− y|

t1/s

)
,(1.7)

where s > 0 is a constant. The family of operators {At}t>0 is said to be an
approximation to the identity, if for every t > 0, At can be represented by the
kernel at in the sense that

Atu(x) =

∫
Rn
at(x, y)u(y)dy

for every function u ∈ ∪p≥1L
p(Rn) and almost everywhere x ∈ Rn.

Assumption 1.2. There exists an approximation to the identity {At}t>0 such
that the composite operator TAt has an associated kernel Kt in the sense of
(1.5), and there exists a positive constant c1 such that for all y ∈ Rn and t > 0,∫

|x−y|≥c1t
1
s

|K(x, y)−Kt(x, y)|dx . 1.

An L2(Rn) bounded linear operator with kernel K satisfying Assumption 1.2
is called a singular integral operator with nonsmooth kernel, since K does not
enjoy smoothness in space variables. Duong and McIntosh [6] proved that if T
is an L2(Rn) bounded linear operator with kernel K, and satisfies Assumption
1.2, then T is bounded from L1(Rn) to L1,∞(Rn). To consider the weighted
boundedness with Ap(Rn) for singular integral operators with nonsmooth ker-
nels, Martell [19] introduced the following assumptions.

Assumption 1.3. There exists an approximation to the identity {Dt}t>0 such
that the composite operator DtT has an associated kernel Kt in the sense of
(1.5), and there exist positive constants c2 and α ∈ (0, 1], such that for all

t > 0 and x, y ∈ Rn with |x− y| ≥ c2t
1
s ,

|K(x, y)−Kt(x, y)| . tα/s

|x− y|n+α
.

Assumption 1.4. There exists an approximation to the identity {At}t>0 such
that the composite operator TAt has an associated kernel Kt in the sense of
(1.5), and there exists a positive constant c1 and some α ∈ (0, 1], such that for

all t > 0 with |x− y| ≥ c1t
1
s ,

|K(x, y)−Kt(x, y)| . tα/s

|x− y|n+α
.

Martell [19] proved that if T is an L2(Rn) bounded linear operator, satisfies
Assumption 1.2 and Assumption 1.3, then for any p ∈ (1, ∞) and w ∈ Ap(Rn),
T is bounded on Lp(Rn, w). Moreover, if T satisfies Assumption 1.3 and
Assumption (1.4), then for w ∈ A1(Rn), T is bounded from L1(Rn, w) to
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L1,∞(Rn, w). Hu and Yang [10] considered the weighted estimates with gen-
eral weights for T and the corresponding maximal operator T ∗ defined by

T ∗f(x) = sup
ε>0
|Tεf(x)|,

with

Tεf(x) =

∫
|x−y|>ε

K(x, y)f(y)dy.

Now let q ∈ (1, ∞), and define the vector-valued singular integral operator
with nonsmooth kernel by

Tqf(x) = |Tf(x)|q =
( ∞∑
k=1

|Tfk(x)|q
)1/q

,

with f = {fk}. Also, we define the vector-valued maximal singular integral
operator T ∗q by

T ∗q f(x) =
( ∞∑
k=1

|T ∗fk(x)|q
)1/q

.

Mo and Lu [20] proved that for all p, q ∈ (1, ∞),

‖Tqf‖Lp(Rn) . ‖|f |q‖Lp(Rn).

Le [16] considered the weighted boundedness for Tq and T ∗q , proved that for all
p ∈ (1, ∞) and w ∈ Ap(Rn),

‖Tqf‖Lp(Rn, w) + ‖T ∗q f‖Lp(Rn, w) .
∥∥|f |q∥∥Lp(Rn, w)

,

and for w ∈ A1(Rn),

‖Tqf‖L1,∞(Rn, w) . ‖|f |q‖L1(Rn, w).

The main purpose of this paper is to establish the quantitative weighted bounds
for Tq and T ∗q . Our main results can be stated as follows.

Theorem 1.5. Let T be an L2(Rn) bounded linear operator with kernel K in
the sense of (1.5). Suppose that T satisfies Assumption 1.3 and Assumption
1.4. Then for p, q ∈ (1, ∞) and w ∈ Ap(Rn),

‖Tqf‖Lp(Rn, w) .n,p,q [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
[σ]A∞

∥∥|f |q∥∥Lp(Rn, w)
.(1.8)

Here and in the following, for p ∈ (1, ∞) and w ∈ Ap(Rn), p′ = p/(p − 1),

σ = w−
1
p−1 . Moreover, if the kernels {Kt}t>0 in Assumption 1.3 satisfy that

for all t > 0 and x, y ∈ Rn with |x− y| ≤ c2t
1
s ,

|Kt(x, y)| . t−ns ,(1.9)

then (1.8) holds true for T ∗q .
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Theorem 1.6. Let T be an L2(Rn) bounded linear operator with kernel K in
the sense of (1.5). Suppose that T satisfies Assumption 1.3 and Assumption
1.4. Then for w ∈ A1(Rn) and q ∈ (1, ∞),

‖Tqf‖L1,∞(Rn, w) .n,q [w]A1
[w]A∞ log2(e + [w]A∞)‖|f |q‖L1(Rn, w),(1.10)

and

w
(
{x ∈ Rn : Tqf(x) > λ}

)
(1.11)

.n,q [w]A1
log2(e + [w]A∞)

∫
Rn

|f(x)|q
λ

log
(

e +
|f(x)|q
λ

)
w(x)dx.

Moreover, if the kernels {Kt}t>0 in Assumption 1.3 satisfy (1.9), then the
estimate (1.11) also holds for T ∗q .

Remark 1.7. Theorem 1.5 implies that

(1.12)
‖Tqf‖Lp(Rn,w) + ‖T ∗q f‖Lp(Rn,w)

.n, p,q [w]
max{1, 1

p−1}+
1
p−1

Ap

∥∥|f |q∥∥Lp(Rn, w)
.

Even for the scalar case, the weighted bounds in (1.11) and (1.12) are new.
However, we do not know if these bounds are sharp.

Remark 1.8. Let w ∈ A1(Rn). We do not know if the estimates∥∥Tqf∥∥L1,∞(Rn,w)
.n,q [w]A1

log2(e + [w]A∞)‖|f |q‖L1(Rn, w)

is true under the hypothesis of Theorem 1.6. It should be pointed out that the
boundedness of T ∗q in (1.11) is new.

In what follows, C always denotes a positive constant that is independent
of the main parameters involved but whose value may differ from line to line.
We use the symbol A . B to denote that there exists a positive constant C
such that A ≤ CB. Specially, we use A .n,p B to denote that there exists
a positive constant C depending only on n, p such that A ≤ CB. Constant
with subscript such as c1, does not change in different occurrences. For any
set E ⊂ Rn, χE denotes its characteristic function. For a cube Q ⊂ Rn and
λ ∈ (0, ∞), we use `(Q) (diamQ) to denote the side length (diameter) of Q,
and λQ to denote the cube with the same center as Q and whose side length is
λ times that of Q. For x ∈ Rn and r > 0, B(x, r) denotes the ball centered at
x and having radius r. For locally integrable function g and a cube Q ⊂ Rn,
〈g〉Q denotes the mean value of g on Q, that is, 〈g〉Q = |Q|−1

∫
Q
g(y)dy.

2. Endpoint estimates

This section is devoted to some endpoint estimates for the grand maximal
operators corresponding to T and T ∗ in Theorem 1.5. These endpoint estimates
play important roles in the proofs of the theorems and are of independent
interest. We begin with some preliminary lemmas.
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Lemma 2.1. Let q, p0 ∈ (1, ∞), % ∈ [0, ∞) and S be a sublinear operator.
Suppose that

‖|Sf |q‖Lp0 (Rn) . ‖|f |q‖Lp0 (Rn),

and for all λ > 0,∣∣{x ∈ Rn : |Sf(x)|q > λ}
∣∣ . ∫

Rn

|f(x)|q
λ

log%
(

e +
|f(x)|q
λ

)
dx.

Then for cubes Q2 ⊂ Q1 ⊂ Rn,

1

|Q1|

∫
Q1

|S(fχQ2)(x)|qdx .
∥∥|f |q∥∥L(logL)%+1, Q2

,

here and in the following, for f = {fk} and a cube Q, fχQ = {fkχQ}, and for
β ∈ [0, ∞),

‖g‖L(logL)β , Q = inf
{
λ > 0 :

1

|Q|

∫
Q

|g(y)|
λ

logβ
(

e +
|g(y)|
λ

)
dy ≤ 1

}
.

Proof. Lemma 2.1 is a generalization of Lemma 3.1 in [10]. Their proofs are
very similar. By homogeneity, we may assume that

∥∥|f |q∥∥L(logL)%+1, Q2
= 1,

which implies that∫
Q2

|f(x)|q log%+1
(
e + |f(x)|q

)
dx ≤ |Q2|.

For each fixed λ > 0, set Ωλ =
{
x ∈ Rn : |f(x)|q > λ

p0−1
2p0

}
. Decompose fk as

fk(x) = fk(x)χΩλ(x) + fk(x)χRn\Ωλ(x) = f1
k (x) + f2

k (x).

Set
f1 = {f1

k}, f2 = {f2
k}; f1χQ2 = {f1

kχQ2}, f2χQ2 = {f2
kχQ2}.

It is obvious that ‖|f2|q‖L∞(Rn) ≤ λ
p0−1
2p0 . A trivial computation leads to that∫ ∞

1

∣∣{x ∈ Rn : |S(f2χQ2
)(x)|q > λ/2}

∣∣dλ
.
∫ ∞

1

∫
Q2

|f2(x)|p0q dxλ−p0dλ

.
∫
Q2

|f2(x)|qdx
∫ ∞

1

λ−p0+
(p0−1)2

2p0 dλ . |Q2|.

On the other hand,∫ ∞
1

∣∣{x ∈ Rn : |S(f1χQ2
)(x)|q > λ/2}

∣∣dλ
.
∫ ∞

1

∫
Q2

|f1(x)|q log%
(
e + |f1(x)|q

)
dxλ−1dλ

.
∫
Q2

|f1(x)|q log%
(
e + |f1(x)|q

) ∫ |f(x)|
2p0
p0−1
q

1

1

λ
dλdx
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.
∫
Q2

|f(x)|q log%+1
(
e + |f(x)|q

)
dx.

Combining the estimates above then yields∫ ∞
0

∣∣{x ∈ Q1 : |S(fχQ2
)(x)|q > λ}

∣∣dλ
.
∫ 1

0

∣∣{x ∈ Q1 : |S(fχQ2
)(x)|q > λ}

∣∣dλ
+

∫ ∞
1

∣∣{x ∈ Rn : |S(f1χQ2)(x)|q > λ/2}
∣∣dλ

+

∫ ∞
1

∣∣{x ∈ Rn : |S(f2χQ2)(x)|q > λ/2}
∣∣dλ . |Q1|.

This completes the proof of Lemma 2.1. �

Recall that the standard dyadic grid in Rn consists of all cubes of the form

2−k([0, 1)n + j), k ∈ Z, j ∈ Zn.

Denote the standard grid by D. For a fixed cube Q, denote by D(Q) the set
of dyadic cubes with respect to Q, that is, the cubes from D(Q) are formed by
repeating subdivision of Q and each of descendants into 2n congruent subcubes.

As usual, by a general dyadic grid D , we mean a collection of cubes with the
following properties: (i) for any cube Q ∈ D , its side length `(Q) is of the form
2k for some k ∈ Z; (ii) for any cubes Q1, Q2 ∈ D , Q1 ∩Q2 ∈ {Q1, Q2, ∅}; (iii)
for each k ∈ Z, the cubes of side length 2k in D form a partition of Rn. By the
one-third trick, (see [12, Lemma 2.5]), there exist dyadic grids D1, . . . , D3n ,
such that for each cube Q ⊂ Rn, there exists a cube I ∈ Dj for some j, Q ⊂ I
and `(Q) ≈ `(I).

Let {Dt}t>0 be an approximation to the identity. Associated with {Dt}t>0,

define the sharp maximal operator M ]
D by

M ]
Dg(x) = sup

Q3x

1

|Q|

∫
Q

|g(y)−DtQg(y)|dy, g ∈
⋃

p∈[1,∞]

Lp(Rn),

here, tQ = {`(Q)}s, `(Q) is the side length of Q and s is the constant ap-
peared in (1.7), the supremum is taken over all cubes in Rn. This operator was
introduced by Martell [19] and plays an important role in the weighted esti-
mates for singular integral operators with nonsmooth kernels. Let q ∈ (1, ∞),
f = {fk} ⊂ Lp0(Rn) for some p0 ∈ [1, ∞], define the sharp maximal function
of f by

M ]
D, q(f)(x) = sup

Q3x

1

|Q|

∫
Q

|f(y)−DtQf(y)|qdy;

see [20].
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Lemma 2.2. Let Φ be an increasing function on [0, ∞) satisfying that

Φ(2t) ≤ CΦ(t), t ∈ [0, ∞).

{Dt}t>0 be an approximation to the identity as in Definition 1.1. Let f = {fk}
be a sequence of functions such that for any R > 0,

sup
0<λ<R

Φ(λ)|{x ∈ Rn : M(|f |q)(x) > λ}| <∞.

Then

sup
λ>0

Φ(λ)|{x ∈ Rn : M(|f |q)(x) > λ}| . sup
λ>0

Φ(λ)|{x ∈ Rn : M ]
D, q(f)(x) > λ}|.

Proof. Let λ > 0, {fk} ⊂ L1(Rn) with compact supports, Q ⊂ Rn be a cube
such that there exists x0 ∈ Q with M(|f |q)(x0) < λ. It was proved in [16] that,
for every ζ ∈ (0, 1), we can find γ > 0 (independent of λ, Q, f , x0), such that

|{x ∈ Q : M(|f |q)(x) > Aλ, M ]
D, q(f)(x) ≤ γλ}| ≤ ζ|Q|,

where A > 1 is a fixed constant which only depends on the approximation
to the identity {Dt}t>0. This, via the argument used in the proof of the
Fefferman-Stein inequality (see [8, pp. 150–151]), leads to our desired conclusion
immediately. �

Lemma 2.3. Let T be an L2(Rn) bounded linear operator with kernel K in the
sense of (1.5). Suppose that T satisfies Assumption 1.3 and Assumption 1.4.
Then for any q ∈ (1, ∞) and λ > 0,

|{x ∈ Rn : |Tf(x)|q > λ}| . λ−1‖|f |q‖L1(Rn).

For the proof of Lemma 2.3, see [20, Theorem 2.3].
For β ∈ [0, ∞), let ML(logL)β be the maximal operator defined by

ML(logL)βg(x) = sup
Q3x
‖g‖L(logL)β , Q.

For simplicity, we denote ML(logL)1 by ML logL. It is well known (see [21]) that
for any λ > 0,

|{x ∈ Rn : ML(logL)βg(x) > λ}| .
∫
Rn

|g(x)|
λ

logβ
(

e +
|g(x)|
λ

)
dx.(2.1)

Lemma 2.4. Let T be the singular integral operator in Theorem 1.6. Then for
each N ∈ N and functions f = {fk}Nk=1 ⊂ Lp0(Rn) for some p0 ∈ [1, ∞),

M ]
D, q(Tf)(x) .ML logL(|f |q)(x).

Proof. Without loss of generality, we may assume that c2 = 2. Let x ∈ Rn, B
be a ball containing x and tB = rsB . Write

1

|B|

∫
B

|Tfk(y)−DtBTfk(y)|qdy ≤ E1 + E2 + E3,
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with

E1 =
1

|B|

∫
B

|T (fχ4B)(y)|qdy,

E2 =
1

|B|

∫
B

|DtBT (fχ4B)(y)|qdy,

and

E3 =
1

|B|

∫
B

|T (fχRn\4B)(y)−DtBT (fχRn\4B)(y)|qdy.

Recall that T is bounded on Lq(Rn). Thus by Lemma 2.1 and Lemma 2.3,

E1 .
∥∥|f |q∥∥L logL, 4B

.ML logL(|f |q)(x).

On the other hand, it follows from Minkowski’s inequality that

|DtBT (fχ4B)(y)|q .
∫
Rn
|htB (y, z)||T (fχ4B)(z)|qdz.

Let

F0 =

∫
16B

|htB (y, z)||T (fχ4B)(z)|qdz

and for j ∈ N,

Fj =

∫
2j+5B\2j+4B

|htB (y, z)||T (fχ4B)(z)|qdz.

By the estimate (1.7) and Lemma 2.1, we know that

F0 ≤
∥∥|f |q∥∥L logL, 4B

,

and

Fj ≤
1

|B|
h(2j)

∫
2j+5B

|T (fχ4B)(z)|qdz . 2−δj
∥∥|f |q∥∥L logL, 4B

.

This, in turn gives us that

E2 .
∥∥|f |q∥∥L logL, 4B

.

Finally, another application of Minkowski’s inequality yields

|Tf(χRn\4B)(y)−DtBT (fχRn\4B(y)|q

≤
∫
Rn\4B

|K(y, z)−KtB (y, z)||fχRn\4B(z)|qdz.

This, via Assumption 1.3, tells us that for each y ∈ B,∣∣T (fχRn\4B)(y)−DtBT (fχRn\4B(y)
∣∣
q
.M(|f |q)(x),

which implies that

E3 .M(|f |q)(x).

Combining the estimates for E1, E2 and E3 then leads to our desired conclusion.
�
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Let D be a dyadic grid. Associated with D , define the maximal operator
MD by

MDg(x) = sup
Q3x,Q∈D

〈|g|〉Q.

Also, we define the sharp maximal function M ]
D as

M ]
Dg(x) = sup

Q3x,Q∈D
inf
c∈C
〈|g − c|〉.

For δ ∈ (0, 1), let

MD, δg(x) =
[
MD(|g|δ)(x)

]1/δ
and M ]

D, δg(x) =
[
M ]

D(|g|δ)(x)
]1/δ

.

Repeating the argument in [24, p. 153], we can verify that if Φ is an increasing
function on [0, ∞) which satisfies that

Φ(2t) ≤ CΦ(t), t ∈ [0, ∞),

then

sup
λ>0

Φ(λ)|{x ∈ Rn : |g(x)| > λ}| . sup
λ>0

Φ(λ)|{x ∈ Rn : M ]
D,δg(x) > λ}|,(2.2)

provided that supλ>0 Φ(λ)|{x ∈ Rn : MD, δg(x) > λ}| <∞.

Lemma 2.5. Under the assumption of Theorem 1.6, for bounded functions
f = {fk} with compact supports and each λ > 0,∣∣{x ∈ Rn : |MTf(x)|q > λ}

∣∣ . ∫
Rn

|f(x)|q
λ

log
(

e +
|f(x)|q
λ

)
dx.

Proof. By the well known one-third trick (see [12, Lemma 2.5]), we only need
to prove that, for each dyadic grid D , the inequality∣∣{x ∈ Rn : |MD(Tf)(x)|q > 1

}∣∣ . ∫
Rn
|f(x)|q log

(
1 + |f(x)|q

)
dx(2.3)

for bounded functions f = {fk}1≤k≤N (N ∈ N) with compact supports. As
in the proof of Lemma 8.1 in [4], we can verify that for each cube Q ∈ D ,
δ ∈ (0, 1),

inf
c∈C

( 1

|Q|

∫
Q

∣∣|MDf(y)|q − c
∣∣δdy) 1

δ

.
( 1

|Q|

∫
Q

|MD(fχQ)(y)|δqdy
) 1
δ

. 〈|fχQ|q〉Q,

where in the last inequality, we invoked the fact that for each λ > 0,

|{x ∈ Rn : |Mf(x)|q > λ}| . λ−1

∫
Rn
|f(x)|qdx;

see [7]. This, in turn, implies that

M ]
D, δ

(
|MDf |q

)
(x) .MD

(
|f |q

)
(x).(2.4)
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Now let Φ(t) = t log−1(e+t−1). It follows from (2.2), (2.4), Lemma 2.2, Lemma
2.4 and (2.1) that∣∣{x ∈ Rn : |MDTf(x)|q > 1}

∣∣
. sup

t>0
Φ(t)

∣∣{x ∈ Rn : M ]
D, δ

(
|MDTf |q

)
(x) > t}

∣∣
. sup

t>0
Φ(t)

∣∣{x ∈ Rn : M
(
|Tf |q

)
(x) > λ}

∣∣
. sup

t>0
Φ(t)|{x ∈ Rn : M ]

D(Tf)(x) > t}|

. sup
t>0

Φ(t)
∣∣{x ∈ Rn : ML logL(|f |q)(x) > t}

∣∣
.
∫
Rn
|f(x)|q log(e + |f(x)|q

)
dx.

This establishes (2.3) and completes the proof of Lemma 2.5. �

We are now ready to establish the main result in this section. As in [17], for
a sublinear operator U , we define the associated grand maximal operator MU

by
MUg(x) = sup

Q3x
ess sup

ξ∈Q
|U(gχRn\3Q)(ξ)|,

where the supremum is taken over all cubes Q ⊂ Rn containing x.

Theorem 2.6. Let q ∈ (1, ∞), T be an L2(Rn) bounded linear operator with
kernel K as in (1.5). Suppose that T satisfies Assumption 1.3 and Assumption
1.4. Then for each f = {fk} and each λ > 0,∣∣{x ∈ Rn : |MT f(x)|q > λ}

∣∣ . ∫
Rn

|f(x)|q
λ

log
(
e +
|f(x)|q
λ

)
dx.(2.5)

If we further assume that the kernels {Kt}t>0 in Assumption 1.3 also satisfy
(1.9), then (2.5) is also true for T ∗.

Proof. As it was proved in [9], the maximal operator ML logL satisfies that∣∣{x ∈ Rn : |ML logLf(x)|q > λ
}∣∣ . ∫

Rn

|f(x)|q
λ

log
(

e +
|f(x)|q
λ

)
dx.

Thus, by Lemma 2.5, our proof is now reduced to proving that the inequalities

MT g(x) .MTg(x) +ML logLg(x),(2.6)

and

MT∗g(x) .MTg(x) +ML logLg(x)(2.7)

hold. Without loss of generality, we assume that c2 > 1.
Let Q ⊂ Rn be a cube and x, ξ ∈ Q. Set tQ =

(
1

c2
√
n
`(Q)

)s
and write

T (gχRn\3Q)(ξ) = DtQTg(ξ)−DtQT (gχ3Q)(ξ)

+
(
T (gχRn\3Q)(ξ)−DtQT (gχRn\3Q)(ξ)

)
.
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A trivial computation involving (1.6) leads to that

|DtQTg(ξ)| . |Q|−1
∞∑
j=1

∫
2jnt

1
s
Q<|ξ−y|≤2j+1nt

1
s
Q

h
( |ξ − y|

t
1
s

Q

)
|Tg(y)|dy

+ |Q|−1

∫
|ξ−y|≤2nt

1
s
Q

|Tg(y)|dy

. |Q|−1
∞∑
j=1

∫
2j−1nt

1
s
Q<|x−y|≤2j+2nt

1
s
Q

h
( |ξ − y|

2t
1
s

Q

)
|Tg(y)|dy

+ |Q|−1

∫
|x−y|≤3nt

1
s
Q

|Tg(y)|dy

. MTg(x).

On the other hand, it follows from Lemma 2.1 that

|DtQT (gχ3Q)(ξ)| . 1

|Q|

∞∑
j=1

∫
2j−1nt

1
s
Q<|x−y|≤2j+2nt

1
s
Q

h
( |ξ − y|

2t
1
s

Q

)
|T (gχ3Q)(y)|dy

+ |Q|−1

∫
|x−y|≤3nt

1
s
Q

|T (gχ3Q)(y)|dy

. ML logLg(x).

Finally, Assumption 1.3 tells us that∣∣∣T (gχRn\3Q)(ξ)−DtQT (gχRn\3Q)(ξ)
∣∣∣ . ∫

Rn\3Q

∣∣K(ξ, y)−KtQ(ξ, y)
∣∣|g(y)|dy

. t
α
s

Q

∫
Rn\3Q

1

|ξ − y|n+α
|g(y)|dy

.Mg(x).

Combining the estimates above leads to (2.6).
It remains to prove (2.7). Let x, ξ ∈ Q. Observe that suppχRn\3Q ⊂ {y :

|y − x| ≥ `(Q)} and

T ∗(gχRn\3Q)(ξ) ≤ |T (gχRn\3Q)(ξ)|+ sup
ε≥`(Q)

|Tε(gχRn\3Q)(ξ)|.(2.8)

Now let ε ≥ `(Q). Write

Tε(gχRn\3Q)(ξ) = D(ε/c2)sTg(ξ)−D(ε/c2)sT (gχ3Q)(ξ)

+
(
Tε(gχRn\3Q)(ξ)−DεsT (gχRn\3Q)(ξ)

)
.

Invoking the argument for MT , we can verify that

|D(ε/c2)sTg(ξ)| .MTg(x)

and
|D(ε/c2)sT (gχ3Q)(ξ)| .ML logLg(x).
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As in [6, p. 249], write

Tε(gχRn\3Q)(ξ)−DεsT (gχRn\3Q)(ξ)

=

∫
|ξ−y|≤ε

K(ε/c2)s(ξ, y)g(y)χRn\3Q(y)dy

+

∫
|ξ−y|>ε

(
K(ξ, y)−K(ε/c2)s(ξ, y)

)
g(y)χRn\3Q(y)dy.

The fact that K(ε/c2)s satisfies the size condition (1.9), implies that∣∣∣ ∫
|ξ−y|≤ε

K(ε/c2)s(ξ, y)g(y)dy
∣∣∣ . ε−n ∫

|ξ−y|<ε
|g(y)|dy .Mg(x).

On the other hand, by Assumption 1.3, we obtain that∣∣∣ ∫
|ξ−y|>ε

(
K(ξ, y)−K(ε/c2)s(ξ, y)

)
g(y)χRn\3Q(y)dy

∣∣∣ .Mg(x).

Therefore,

sup
ε≥`(Q)

|Tε(gχRn\3Q)(ξ)| .MTg(x) +ML logLg(x),

which, via the estimates (2.6) and (2.8), shows that

MT∗g(x) .MTg(x) +ML logLg(x).

This completes the proof of Theorem 2.6. �

3. Proof of theorems

Let η ∈ (0, 1) and S be a family of cubes. We say that S is η-sparse, if
for each fixed Q ∈ S, there exists a measurable subset EQ ⊂ Q, such that
|EQ| ≥ η|Q| and EQ’s are pairwise disjoint. Associated with the sparse family
S and constant β ∈ [0, ∞), we define the sparse operator AS, L(logL)β by

AS, L(logL)βf(x) =
∑
Q∈S
‖f‖L(logL)β , QχQ(x).

We denote AS, L(logL)1 by AS, L logL.
To prove Theorem 1.5 and Theorem 1.6, we will employ the following lem-

mas.

Lemma 3.1. Let q ∈ (1, ∞) and β ∈ [0, ∞), U be a sublinear operator and
MU the corresponding grand maximal operator. Suppose that U is bounded on
Lq(Rn), and satisfies the endpoint estimate that, for any λ > 0,∣∣{y ∈ Rn : |MUf(y)|q > λ

}∣∣ . ∫
Rn

|f(y)|q
λ

logβ
(

e +
|f(y)|q
λ

)
dy.

Then for N ∈ N and bounded functions f = {fk}1≤k≤N with compact supports,
there exists a 1

2
1

3n -sparse family S such that for a.e. x ∈ Rn,

|Uf(x)|q . AS, L(logL)β
(
|f |q

)
(x).
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For the proof of Lemma 3.1, see [9].

Lemma 3.2. Let β ∈ [0, ∞), S be a sparse family and β ∈ [0, ∞), AS, L(logL)β

be the associated sparse operator. Then for p ∈ (1, ∞) and w ∈ Ap(Rn),∥∥AS, L(logL)βg‖Lp(Rn,w) . [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
[σ]βA∞‖g‖Lp(Rn, w).

Proof. Lemma 3.2 was indicated by Lemma 2.1 in [9], and can be proved by
the argument used in the proof of Theorem 2.1 in [3]. In fact, by the one-third
trick, we may assume that S ⊂ D for some dyadic grid D . As it was pointed
out in the proof of Theorem 2.1 in [3], for each cube Q ⊂ D ,

‖gσ‖L(logL)β , Q . [σ]βA∞〈σM
D
σ, %g〉Q,(3.1)

here, % = (1 + p)/2, MD
σ, % is the maximal operator defined by

MD
σ, %g(x) = sup

I3x, I∈D

( 1

σ(I)

∫
I

|g(y)|%σ(y)dy
) 1
%

.

On the other hand, it follows from Theorem 2.3 in [15] that for p ∈ (1, ∞) and
w ∈ Ap(Rn),∥∥∥∑

Q∈S
〈|v|σ〉QχQ

∥∥∥
Lp(Rn,w)

. [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
‖v‖Lp(Rn, σ).(3.2)

Combining the inequalities (3.1) and (3.2) leads to that

‖AS, L(logL)β (gσ)‖Lp(Rn,w) . [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
[σ]βA∞‖M

D
σ,%g‖Lp(Rn,σ)

. [w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
[σ]βA∞‖g‖Lp(Rn, σ),

since MD
σ,% is bounded on Lp(Rn, σ) with bound independent of σ. This com-

pletes the proof of Lemma 3.2. �

Lemma 3.3. Let β ∈ [0, ∞), S be a sparse family and AS, L(logL)β be the
corresponding sparse operator. Then for p ∈ (1, ∞), ε ∈ (0, 1] and weight u,

‖AS, L(logL)βg‖Lp(Rn, u) . p
′1+βp2

(1

ε

) 1
p′ ‖g‖Lp(Rn,ML(logL)p−1+εu).

Moreover, for any λ > 0,

u({x ∈ Rn : AS, L(logL)βg(x) > λ})

.
1

ε1+β

∫
Rn

|g(x)|
λ

logβ
(

e +
|g(x)|
λ

)
ML(logL)εu(x)dx.

Lemma 3.3 is a combination of Lemma 4.1 and Lemma 4.2 in [9].
Let u be a weight, ε ∈ (0, 1) and T be the operator in Theorem 1.5. By

Theorem 2.6, Lemma 3.1 and Lemma 3.3, we know that for each p ∈ (1, ∞),

(3.3)

‖Tqf‖Lp(Rn, u) + ‖T ∗q f‖Lp(Rn, u)

. p′2p2
(1

ε

) 1
p′ ‖|f |q‖Lp(Rn,ML(logL)p−1+εu).
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Proof of Theorem 1.5. Let q ∈ (1, ∞). Under the hypothesis of Theorem 1.5,
we know that T and T ∗ are bounded on Lq(Rn), see [6]. The conclusion
of Theorem 1.5 now follows from Theorem 2.6, Lemma 3.1 and Lemma 3.2
directly. �

Proof of Theorem 1.6. By Theorem 2.6, Lemma 3.1 and Lemma 3.3, we know
that for each weight w and ε ∈ (0, 1),

(3.4)

w
(
{x ∈ Rn : Tqf(x) > λ}

)
+ w

(
{x ∈ Rn : T ∗q f(x) > λ}

)
.

1

ε2

∫
Rn

|f(x)|q
λ

log
(

e +
|f(x)|q
λ

)
ML(logL)εw(x)dx.

The estimate (1.11) now follows if we apply the argument used in the proof of
[14, Corollary 1.4], see also the proof [18, Corollay 1.3].

We now prove (1.10). As in the proof of [14, Corollary 1.4], it suffices to
show that for each weight w and ε ∈ (0, 1),

w({x ∈ Rn : Tqf(x) > λ}) . 1

λε2

∫
Rn
|f(x)|qML(logL)1+εw(x)dx.(3.5)

We assume that c1 = 2. For λ > 0 and f = {fk}, applying the Calderón-
Zygmund decomposition to |f |q at level λ, we obtain a sequence of cubes {Ql}
with disjoint interiors, such that

λ <
1

|Ql|

∫
Ql

|f(x)|qdx . λ,

and |f(x)|q . λ for a.e. x ∈ Rn\ ∪l Ql. For each fixed k, set

f1
k (x) = fk(x)χRn\(∪lQl)(x),

f2
k (x) =

∑
l

AtQl bk, l(x), f3
k (x) =

∑
l

(
bk, l(x)−AtQl bk, l(x)

)
χQl(x),

with bk, l(y) = fk(y)χQl(y), tQl = {`(Ql)}s. Set f j(x) = {f jk(x)} with j =

1, 2, 3. By the fact that
∥∥|f1|q

∥∥
L∞(Rn)

. λ, we deduce from (3.3) that

w({x ∈ Rn : |Tf1(x)|q > λ}) . 1

λ2ε

∫
Rn
|f1(x)|2qML(logL)1+εw(x)dx

.
1

λε

∫
Rn
|f(x)|qML(logL)1+εw(x)dx.(3.6)

To estimate |Tf3|q, we set Ω = ∪l4nQl and bl(y) = {bk, l(y)}. Obviously,

|bl(y)|q = |f(y)|qχQl(y).

For each k and x ∈ Rn\Ω, write∣∣Tf3
k (x)

∣∣ ≤∑
l

∫
Rn

∣∣K(x, y)−KAtQl
(x, y)

∣∣|bk,l(y)|dy.
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Applying Minkowski’s inequality twice, we obtain

|Tf3(x)|q ≤
∑
l

∫
Rn

∣∣K(x, y)−KAtQl
(x, y)|bl(y)|qdy.

Therefore,

w
({
x ∈ Rn\Ω : |Tf3(x)|q > λ/3

})
(3.7)

. λ−1
∑
l

∫
Rn

∫
Rn\4nQl

∣∣K(x, y)−KAtQl
(x, y)w(x)dx|bl(y)|qdy

. λ−1
∑
l

∫
Ql

|bl(y)|qMw(y)dy . λ−1

∫
Rn
|f(x)|qMw(x)dx.

It remains to estimate |Tf2|q. Let w̃(x) = w(x)χRn\Ω(x). A trivial compu-
tation shows that

w(Ω) .
1

λε

∫
Rn
|f(y)|qMw(y)dy.(3.8)

For each fixed l, a straightforward computation involving Minkowski’s inequal-
ity gives us that for v = {vk},∑

k

∣∣∣ ∫
Rn
AtQl bk, l(y)vk(y)dy

∣∣∣ . ∫
Rn
|v(y)|q′

∫
Ql

htQl (y, z)|b
l(z)|qdzdy.

Applying the argument in [6, p. 241], we know that for some θ ∈ (0, 1),∫
Ql

htQl (y, z)|b
l(z)|qdz .

∥∥|bl|q∥∥L1(Rn)
inf
z∈Ql

hθtQl (y, z) . λ
∫
Ql

hθtQl (y, z)dz.

Therefore,∑
k

∣∣∣ ∫
Rn
AtQl bk, l(y)vk(y)dy

∣∣∣ . λ ∫
Ql

∫
Rn
hθtQl (y, z)|v(y)|q′dydz

. λ
∫
Ql

M(|v|q′)(z)dz.

Recall that for each l and γ ∈ [0, ∞),

inf
y∈Ql

ML(logL)γ w̃(y) ≈ sup
y∈Ql

ML(logL)γ w̃(y).

It then follows that∫
∪lQl

ML(logL)γ w̃(y)dy .
∑
l

|Ql| inf
y∈Ql

ML(logL)γ w̃(y)

. λ−1

∫
Rn
|f(y)|qML(logL)γ w̃(y)dy.
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Let p1 = 1 + ε/4. For v = {vk} with |v|q′ ∈ Lp
′
1

(
Rn, (ML(logL)ε/2w̃)1−p′1

)
, we

have that ∑
k

∑
l

∫
Rn

∣∣vk(y)AtQl bk, l(y)
∣∣dy . λ∑

l

∫
Ql

M
(
|v|q′

)
(z)dz

. λ
(∫
∪jQj

{
M
(
|v|q′

)
(y)
}p′1(ML(logL)1+εw̃(y)

)1−p′1dy) 1
p′1

×
(∫
∪jQj

ML(logL)1+εw̃(y)dy
) 1
p1

. λ
p1−1
p1

(∫
Rn
|v(y)|p

′
1

q′ (ML(logL)ε/2w̃)1−p′1(y)dy
) 1
p′1

×
(∫

Rn
|f(y)|qML(logL)1+εw̃(y)dy

) 1
p1
,

where the last inequality follows from the fact that for any ε ∈ (0, 1) and weight
u, ∥∥Mh

∥∥
Lp
′
1 (Rn, (M

L(logL)p1−1+ε/4u(y))1−p
′
1 )
.n p

2
1

(1

ε

) 1
p′1 ‖h‖

Lp
′
1 (Rn, u1−p′1 )

,

see [14, p. 618–619], and the fact that for any weight u,

ML(logL)ε/2(ML(logL)ε/2u)(x) ≈ML(logL)1+εu(x),

see [2]. Therefore, we have that∫
Rn
|f2(x)|p1q ML(logL)ε/2w̃(x)dx . λp1−1

∫
Rn
|f(x)|qML(logL)1+εw(x)dx.

This, along with the estimate (3.3), tells us that

w
({
x ∈ Rn\Ω : |Tf2(x)|q >

λ

3

})
(3.9)

.
1

ε2p1
1

λp1

∫
Rn
|f2(x)|p1q ML(logL)ε/2w̃(x)dx

.
1

λε2

∫
Rn
|f(x)|qML(logL)1+εw(x)dx.

Combining the estimates (3.6)–(3.9) yields (3.5) and completes the proof of
Theorem 1.6. �

Remark 3.4. The inequalities (3.3), (3.4) and (3.5) extend and improve the
results about the weight estimates with general weight for T and T ∗ established
in [10].
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