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NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BY
(p,)-DERIVATIVE OPERATOR

AHMAD MOTAMEDNEZHAD* AND SAFA SALEHIAN

Abstract. In this paper, we introduce interesting subclasses
H{,’g’ﬁ @ and Hgg*ﬁ (v) of bi-univalent functions by (p, g)-derivative
operator. Furthermore, we find upper bounds for the second and
third coefficients for functions in these subclasses. The results pre-
sented in this paper would generalize and improve some recent
works of several earlier authors.

1. Introduction

Let A be a family of functions of the form
oo
1) FE) =243 e,
n=2
which are analytic in the open unit disk U= {z € C: |z| < 1}. Also we

let S to denote the class of functions f € A which are univalent in U.
Every function f € S has an inverse f~!, which is defined by

FHf(2) =2 (€

(F7 (w) = w — asw? + (243 — az)w® — (5a3 — 5asas + ag)w* + - - -.

and

| =

PO ) = w (|w\ < ro(f). ro(f) >

In fact, the inverse function f~! is given by
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A function f € A is said to be bi-univalent in U, if both f and f~!
are univalent in U. Let o9 denote the class of bi-univalent functions in
U given by (1)

In recent years, various subclasses of the bi-univalent functions og
were introduced by researcher and obtained non-sharp estimates on the
coefficients |az| and |ag| for functions in these subclasses of the function
class 0. For a brief history and interesting examples of functions in the
class o, see [12]. In fact that this widely-cited work by Srivastava et al.
[12] actually revived the study of analytic and bi-univalent functions in
recent years and that it has led to a flood of papers on the subject by (for
example) Srivastava et al.[2, 3, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24],
and others [9, 26, 27, 28].

In the field of Geometric Function Theory, various subclasses of the
normalized analytic function class A have been studied from different
viewpoints. The g-calculus as well as the fractional g-calculus provide
important tools that have been used in order to investigate various sub-
classes of A. Historically speaking, a firm footing of the usage of the
g-calculus in the context of Geometric Function Theory was actually
provided and the basic (or ¢-) hypergeometric functions were first used
in Geometric Function Theory in a book chapter by Srivastava (see, for
details, [10, pp. 347 et seq.]). In fact, the theory of univalent functions
can be described by using the theory of the g-calculus. We begin by pro-
viding some basic definitions and concept details of the ¢-calculus which
are used in this paper. We shall follow the notation and terminology in
[10, 11]. We first recall the definition of fractional p, g-calculus operators
of a complex-valued function f(z):

Definition 1.1. For a function f € A given by (1) and0 < g <p < 1,
the (p, q)-derivative of function f is defined by

fpz)—flgz) . 240

(p—q)z

f(0) 5 z2=0.

Dp,qf(z) =

o
For f(z) = z+ ) anz™, according to the definition, we have
n=2

(3) Dpof(z) =1+ Z[n}pﬂanz"*l,
n=2
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where the symbol denotes the so-called (p, q)-bracket or twin-basic num-

ber

pn_qn
4 n = —.
@) g = 2=

Note that, by putting p = 1, the (p,q)-derivative reduces to the q-

derivative.
f(z)—f(gz) L 240

(1—q)=
qu(z) = !
1(0); z=0.
So, for f € A, we have
(5) qu(z) =1+ Z[n}qanzn_la
n=2
where
1—4q"
(6) [n]q = 1—q

Also, by taking ¢ — 17, Dy f(z) reduces to f'(z), for f € A.

In this paper, we present new subclasses of the bi-univalent functions
oy by using the (p, ¢)-derivative operator. Furthermore, we obtain esti-
mates on the initial coefficients |az| and |as| for functions in these new
subclasses.

2. Coefficient estimates for the function class H{igﬁ o

In this section, we present and investigate the subclass ’Hg’g’ﬁ “,

Definition 2.1. A function f(z) given by (1) is said to be in the

class HEIP® (0 <p<q<1,0<a<1, 8>0),if the following
conditions are satisfied:

(7) feon, |arg(Dpaf(z) + B2(Dpaf(2)))] < 5 (z€U)
and
(8)  larg (Dpgg(w) + Bu(Dyag(w)))| < - (w € L),

0 m—
where 2(1 —«) > (/_37171“1 <1 and g is the extension of f~! to U.
1

m=

Remark 2.2. By taking ¢ — 1~ and p = 1 in Definition 2.1, the
class HELP® reduces to the class Hyx (o, 3), wad defined by Frasin [5)].
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Now, we obtain the estimates on the coefficients |az| and |as| for

function class H@’gﬁ ", For this purpose we need the following lemma.

Lemma 2.3. [4] If p(z) € P, then |pi| < 2 for each k, where P is the
family of all functions p(z) analytic in U for which

Rep(z) >0, p(z) =1+ pr1z+pe2® +p3z+ - for z€ U,

Theorem 2.4. Let the f(z) given by (1) is said to be in the class
7{{;5’5’“. Then

2 2
< mi ,
las| < min (1+5)2lpq \/|2a(1+2,6’)[3]p7q+(1—a)(1+5)2[2]§7q|
and
las| < 402 n 2cy
TR, (1288l

Proof. At the first, we write the argument inequalities in (7) and (8)
as follows:

9) Dy f(2) + B2(Def(2)) = (k(2))* (2 € V)
and
(10) Dyg(w) + Bw(Dyg(w)) = (h(w))* (w € U),

Respectively, where k(z) and h(w) satisfy the following inequalities
Re(k(z)) > 0 and Re(h(w)) >0 (z,w € U).

Furthermore, the functions k(z) and h(w) have the forms

(11) k(2) =14 k12 + koz? + k32> +- -

and

(12) h(w) = 1+ hyw + how? + hgw? + - - -,

Now, equating the coefficients in (9) and (10), we get

(13) 1+ 8)[2]p,qa2 = ki,

(14) (1 +28)8lp gas = aky + 22
(15) —(1+ 8)[2]pqa2 = ahy

and

(16) (1+28) 8Jpg(203 — a5) = s + 2O~z

2
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From (13) and (15), we get

(17) hy = —k;
and
(18) 2(1+ B)%[2]2 ja3 = o® (kT + hi).

Now from (14), (16) and (18), we obtain

21+ 28)[8lpga3 = ks + 1) + SO 2 1 12)

a—1
_i_i

= a(ky + ho) (1+ B)%[2]2 4a3.

So, we have
_ a?(kg + ho)
20((1 +28)[3]p,q + (1 — ) (1 + 5)2[2]12341.

Now getting the absolute values of the Egs. (18) and (19) and using
Lemma 2.3, we have

(19) a5

a?(Jk1|? + |h1]?) 402

2
las]” < 2(14‘5)2[2]1%,(1 = (1+,8)2[2]12),q

and
) 02 ([k| + |ha])
T 201+ 28)[8lpq + (1 — ) (1 + 8)%[2]3 ]
< 4a?
T 201+ 28)[3]g + (1 — a)(1+ B)?2]7 .|
respectively. Next, in order to find the bound on the coefficient |as|, we
subtract (16) from (14), we thus get
Oé(k‘g — hz)

2(1+28)[3lp,g
Upon substituting the value of a2 from (18) into (20), it follows that
_ (k) ok —hy)
20482213, 21 +28)[3]pg
So, by using Lemma 2.3, we get
o®([k1|* +[M]?) | alke| + |ho|)

200+ 8)212)5, 201 +25)3lpyg
< 402 + 2c
T A+B)RE,  (1+28)Blpg

(20) az = CL% +

(21) as

laz| <
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This evidently completes the proof of Theorem 2.4. O

3. Coefficient estimates for the function class Hgg’ﬁ (7)

We begin this section by introducing the function class Hg’g’ﬂ (7) by
means of the following definition.

Definition 3.1. A function f(z) given by (1) is said to be in the

class Hgg”g(’y) 0<g<p<1l 0<y<1, B8>0), if the following
conditions are satisfied:

(22) feow, Re (Dp,qf(z) + ﬂz(anf(z))') >~ (z€l)

and

(23) Re (Dp,qg(w) + /Bw(Dp,qg(w))/) > (wel),

) —
where 2(1 — ) > (,_81171“1 <1 and g is the extension of f~! to U.

Remark 3.2. By taking ¢ — 1~ and p = 1 in Definition 3.1, the
class Hglg’ﬁ(v) reduces to the class Hx(v, 3), introduced and studied by
Frasin [5].

Now, we find the estimates on the initial coefficients for class Hg’;”ﬁ (7)-

Theorem 3.3. Let the f(z) given by (1) is said to be in the class
HELP (). Then

la| < min 2(1—9) 2(1—1)
N (1+8)[2pg " | (1+28)[3]p4

and

4(1 —7)? 2(1 ) 2(1 ) }
(1+8)2212,  (1+28)[8lpq (1+28)[3]pq

Proof. At the first, we write the argument inequalities in (22) and
(23) as follows:

(24)  Dqof(2) + Bz(Def(2)) = v + (1 = 7)k(2) (2 € U)
and

(25)  Dyg(w) + pw(Dyg(w)) =~ + (1 = y)h(w) (w € V),

las| < min{
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where k(z) and h(w) have the forms (11) and (12), respectively. Now,
equating the coefficients in (24) and (25), we get

(26) (14 B)2]pqaz = (1 =)k,

(27) (1+28)[B]pqas = (1 —7)ke,

(28) —(1 4 B)2pqaz = (1 =)l

and

(29) (1+26)[3]p.q(2a3 — a) = (1 = 7)he.
From (26) and (28), we get

(30) hi =~k

and

(31) 2(1+ B)*[205.405 = (1 = 7)*(k{ + hi).

Now from (27) and (29), we obtain

(32) 2(1 +28)[3]pqa3 = (1 — 7) (k2 + ha).

Now getting the absolute values of the Egs. (31) and (32) and using
Lemme 1, we have

las|? < (L= ( ka2 + [P f?) _ 401 —7)?
2|” = 2(14 B)%[2)2, = T+ A,
and
|a2|2 < (1_7)(‘k2‘+’h2‘) < 2(1_7)

2(0+28)Blpg  — (1+28)8lpq

respectively. Next, in order to find the bound on the coefficient |as|, we
subtract (29) from (27), we thus get

(L —7)(k2 — ho)
2(1+28)[3]pq
By substituting the value of a3 from (31) into (33), it follows that
(L =72k +h3) (1 =)k — ho)
2(1+ B)*[2]7, 2(1428)[3]p,q
By using lemma 2.3, we readily get
4(1 —9)? 2(1—7)
1+ 821213,  (1428)Blg

(33) a3 = a3 +

as =

las| <
(
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By substituting the value of a3 from (32) into (33), it follows that

gy LNt hy)  (A—9)ke—hy)  (A—7ky
20+28)Blpe  20+28)Blpg  (1+26)[3]pq
By using lemma 2.3 once again, we readily get
2(1 —9)
6= 5288,

This evidently completes the proof of Theorem 3.3. 0

4. Corollaries and Consequences

Taking ¢ — 17 and p = 1 in Theorem 2.4, we obtain the following
result.

Corollary 4.1. Let f given by (1) be in the class H(X, ). Then

lag| < mm{ a , 20 }
1+8 \/2(a+2)+4B(a+ B —aB +2)
and
a? n 20
1+8)2  3(1+28)

Remark 4.2. Corollary 4.1 provides the estimate of |as| and |as|,
which was obtained previously by Frasin [5, Theorem 2.2].

las| <
(

Taking ¢ — 17 and p = 1 in Theorem 3.3, we obtain the following
result.

Corollary 4.3. Let f given by (1) be in the class H(3, 3). Then

f1=v [20-9)
PSR ey

and

1—=7)?2, 2(1—9) 2(1-7) }: 2(1-1)
(1+58)2 " 3(1+28)" 3(1+28) 3(1+28)
Remark 4.4. Corollary 4.3 provides the estimate of |az| and im-

proves the estimate of |as|, which was obtained previously by Frasin [5,
Theorem 3.2].

las| < min {
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