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STABILITY THEOREMS OF THE OPERATOR-VALUED
FUNCTION SPACE INTEGRAL ON Cy(B)

K. 8. Ryu anDp S. C. Yoo

ABSTRACT. In 1968, Cameron and Storvick introduce the definition
and the theories of the operator-valued function space integral. Sirce
then, the stability theorems of the integral was developed by Johnson,
Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the
existence theorem of the operator-valued function space [8].

In this paper, we will prove the stability theorems of the operator-
valued function space integral over paths in abstract Wiener space

Co(B).

1. Preliminaries

In this section, we describe some notations, definitions and known
facts which will be needed in the subsequent sections.

Let (B, B(B),m) be an abstract Wiener space. For A > 0, let m,
be the Borel measure on B given by my (B) = m(A"!B) for Borel
subset B of B. Let C(B) denote the set of all B-valued continuous
functions on {a, b] and let Cy{B) denote the set of all continuous functions
on [a,b] which vanish at a. Then Cy(B) is a real separable Banach
space in the norm || y |lgm) = sup | y(t) ig. Fory in C(B), y

has the unique decomposition ¥y = x + ¢, where z is in Co(B) and € is
in B. Then Brownian motion in B induces a probability measure mp
on (Cy(B), B(Cy(B))) which is mean-zero Gaussian, as following ; let
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—

t = (t1,t9, - ,t,) be given with a =ty < t; < tp,--- ,t, < b. Let
T+ : B* — B" be given by

(1.1) TT(.’El, Tg, - ,:L'n)

T
= (vt~ to T, VvVt —to y + Vit — b T2, - :Z Vii—tig xi).
=1

Then we can find that rng is well defined, countable additive, mean zero,
stationary increment, and -Gaussian measure.
By the change of variable theorem, we have

LEMMA 1.1 (WIENER INTEGRATION THEOREM). Let T = (ty, ta,
- ,ta) be given witha =ty <t <t3,- ,t, <band f:B" = Cbea
Borel measurable function. Then

f(y(tl)a 'y(tz), T !y(tn)) de (y)
Co{B}

(12) .
= foTw(zy,xg,--- ,mn)d(Hm)(asl,:rg,--- Tl

Bn
where by =, we mean that if either side exists, both sides exist and they
are equal.

In (3], Chung considered the Borel subsets 2, A > 0 and D of an
abstract Wiener space B which satisfies the following ; for two positive
reals, A; and Az, A2y, = Q,5, and B is the disjoint union of this family
of sets. Also m({2,) = 0 if and only if A # 1. Let (B, B(B), ) be the
completion of (B, B{B),m). A subset N of B is called the scale-invariant
null subset (s-null set) provided that for all A > 0, my(N) = 0. A subset
S of B is called the scale-invariant measurable subset provided that for

A > 0, there is a my-measurable subset S, of {2, such that § = ()\UOS ,\)UD
=
where D is a subset of B\ ,\Uoﬂ)" And, we say that the propositional
=
function p(z) on B holds s-a.e. if the set {z | p (z) does not true} is an

s-null set.

DEFINITION 1.2. Let L, »(B) (1 < p < 00) be the class of all C-valued
Borel measurable function ¢ on B such that for A > 0, | ¥(A(}) |7 is
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m-integrable and

A3 N lhm= s OO Iy = sup] [ 1902) P am()]

is finite. For f and g in L, (B}, we say that f is equivalent to g, denote
f~gift {pz € B| f(z) # g(z)} is an my-null set for all A > 0. Clearly ~
is an equivalent relation on L, .(B). Hence we obtain a quotient space
Lyo(B)/ ~ which we denote £, (B). From [8], we have (£,(B)}, ||
“ lp,c0) 18 & Banach space.

==

DEFINITION 1.3. For A > 0, we define an operator Cy on £,(B)
given by

(1.4) (C)(z) = /B YAty + ) dmiz)
for ¢ in £, (B)-

By the above definition, we easily check that for A > 0, C, is bounded
linear operator from £, .(B) into itself, and {|| C, ||| < 1.

DEFINITION 1.4. Let 6 : [a, b xB — C be a bounded Borel measurable
function. We define the multiplication operator My, by (Mg(s,.)v,!)) (z) =
0(s,z)y(z). Let 6(s) denote the operator My, of multiplication by
(s, ) acting in L, (B).

REMARK. In the above definition 1.4, 8(s) is a bounded linear opera-
tor from L£,.(B) into itself and ljj 8(s) U< sup | (s, z) |.
zeB

DEFINITION 1.5. Let F' : C(B) — C be a function, let A > 0 be given,
let 9 be in £, (B) and let = be in B. We define

(L5)  [Kx(F)¥](z) = fc o, PO £ 2000 7H0) + ) dms ).

If K,\(F) exists and K,(F) is a bounded linear operator from £, ., (B)
into itself for each A > 0. We say that the operator-valued function space
integral K, (F) exists for all A > 0.
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We adopt the following notations and assumptions throughout this
paper. Let 6 : [a,b] x B — C be a bounded Borel measurable function
by the upper bound M and let n be a C-valued Borel measure on (a, b).
n = u + o will be the decomposition of 7 into its continuous part
and discrete part ¢ = Z;‘zl wydr,. And let

(16) Fuly) = ( /( 00s,3(8) dn(s)"

for y in Cy(B). Let 4, be the Dirac measure with total mass one concen-
trated at 7.

DEFINITION 1.6. Let (£, 1) be a measure space and let f : @ —
L(Lp(B)) ,the space of all bounded linear operator from L£,0(B) to
itself, be a function. We say that f is (s-w)-integrable if there exists
U € L{Lyu(B)) such that for ¢ in L,(B), ¢ € L4(B), v a Borel
measure on {0, +o0), A > 0,

/ j V9] (e)p(z) dma(z) dv(N)
(0,400) S

(1.7)
:A/{MW) /m [Flw)d)(z)e(z) dma(z) dv(X) du(w).

In this case, we write U = (s — w) — [, f(w)du(w).

REMARK. We easily check that (s-w)-integral is well defined [8]. The
conditions of (s-w)-integrable is rather weaker than the Bochner integral
for the operator-valued function.

From (8], we have following facts.

THEOREM 1.7. If f is (s-w)-integrable on €, f is bounded and A is a
measurable subset of (2, u), then for v in £,(B), f is (s-w)-integrable
on A. Moreover

[s-w)- [ f@a@]ie = [ [few]@dw s-ae =
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THEOREM 1.8. Let f be (s-w)-integrable on Q such that || f ||| is
bounded. Then

(1.8) I (s —w) - fnf(w)d#(w) < HF oo | 42 ] (92):

THEOREM 1.9. Let F,(z) = (f(a‘b)ﬁ(s,m(s)), dn(s))n and 6 be
bounded by M, where n be a Borel measure on (a,b) and u be a contin-

uous part of n, ¢ = ZL‘:l w;d,, be a discrete part of n. Then for any

A > 0, there is an operator-valued function space integral K,(F,) of F),
such that
KA(F n)

o, ...,
= Z bt M Z (s —w)

ol
(1.9)  wotg= P 50 5

<[ [toomorotatonsnc ,sh>]d("fiﬁu)<sp-u>a

90:01 - Jh—1 p=1 i=1

where for k = 0,1,2,--- ,h,
Gr=1
Ly = Coyyy 0 0(sk1) 0Cop 0 0(sk2) 0+ 0 0(sp5,_,) 0 {B(TIH-I)} :

Doigijiye iy = {(So,hSO,za'“ + 05 SL1S12 " 2 Shgn) | @ = 800 <
S01 < - < 8oy T < S < ee < S < e <

Sh—1gy < Th < 8p1 < - < Spg ., < b= Th*“}
forp=1,2,--- ,h+1andfori=1,2,--,jp,

Gp: = A/(Spfl,i - Sp—l,i—l),
Opjr1 = A/(Spo — Sp-1,3,):
Moreover, ||| Ka(Fa} [I| < (M | n )™

2. The main theorems

In this section, we will prove the stability theorem for the operator-
valued function space integral over paths in abstract Wiener space.
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DEFINITION 2.1. Let < 8, > be a bounded sequence of the complex-
valued Borel measurable function on B. We say that < 8, > converges
uniformly s-a.e. if there is a complex-valued function  on B such that
for each € > G, 11111% my{z : |[Ou{z) -0(x}{ > €} = O uniformly for A > 0.

LEMMA 2.2, In the above, a sequence < My, > converges to My as
n — oo in the operator-norm topology.

Proof. Suppose a sequence < 6, > is bounded by M and ¢ is in
Ly00(B) with || 9 |0 = 1. Let € > 0 be given. Then for A > 0, there
is a & > 0 such that for every Borel subsets K of 1) with m,(K,) < 6,

(2.1) [K | (z) |P dma(z) < €

which implies that for any scale-invariant measurable subset K with
my(K) < § for all A > 0, [ | ¥(z) P dmr(z) < €forall A > 0,
for example K = ,\L;JOK 3\

Since < @, > converges to # uniformly s-a.e., there is an ng in N such
that n > ng implies my{z € B| |0n(x) — 8(x)| > ¢} < dforal A > 0.
Let T, = {z € B| |6,(x) — 8(x)| > €} for n € N. Then T, is a scale-
invariant measurable subset and for n > ng, mA(T,,) < é for all A > 0,
and so for || ¢ jlpe = 1,

supl [ 1 Mapla) — Moot P (o))

A0

=sup[j£r4;|axm) @) [P | $(e) P dmaa)

A0
1

(22 + [ 10a) = 0@ P 1u@ P am@]’

< sup [6” A L (x) P dmy(x)

1

r@My [ 6 P dm)]’
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< sup [epf | ¥(z) P dmy(z) + (QMF)%]%

A0 Q
1
<e + 2Mer.

Hence for n > ng,

sup || (Ms, — Mol [|poo < € + 2Mei, as desired. O
(I4llp00=1

THEOREM 2.3. Let F™(z) = ([ 60n(s,2(s))dn(s))" as a given in
Theorem 1.9. Suppose that for all n € N, 8, is uniform bounded Borel
measurable on [a, b x B and there is a bounded Borel measurable function
8 from [a,b] x B to C such that for n s-a.e., < On(s,"} > converges to
(s, -} uniformly.

Then K (F™) — K,(F,) in the operator norm topology.

Proof. Let L}:m) = Cop.s © B (81,1) © Coy,yy © Om(sr2) 00 Cak*l.jk,l °©
O(88,5.,) © {Gm(fkﬂ)}%l for m € N and for k = 0,1,2,--- , h where
(S0.0s-+ + Shj,_,) 18 i Agjyr s, in Theorem 1.9 and [em(rm)]q"*’ =
[9(Th+1)] o I, an identity map.

Let { | b lloo! € N} U { 16| } be bounded by M, let U =
max{M,l}. Foru=0,1,---,h, v=1,2,-++ ju41, let

AE:,Y;') = L(Sm} c L(lm) 0---0 LEE)I o cﬂ!u-ﬂJ ° Bm(sli,l) o:--0 Cﬁu—l.v—]
o gm(su,v—l) o Ca,,_l'v o B(Su,'u) G---0 Cﬂu—l,jn_l

© g(su;jn—l) o (Q(Tju—l))qu‘l o LU+1 0---0 Lh-’
and

A(m)! = LMoLi™o- o L™ o Lo L1 o---oLg").
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Then, by Theorem 1.8 and Theorem 1.9,

j”Lém)oL(m)o...oLgm)—LnoL}o---oLh il

Ju+1

< [{ZH\A — AT F AT, - AT
(2.3)
< W 6m — 6l [ZMU% + Z QU]
u=0,g,,—17#0
< |l bn — 6 nU™
Hence
Il FA(FE™) ~ Ka(Fa) I
[/} R [#]
-<_ Z n,' ] I l l L‘;Jh I i
QT gn=n @il gn!
(2'4) h+1 dp
S [ o - oo a(TITT) o
bt =00 Dogegieming p=1 i=1

< U [f| 6m - 64l e | (a,0)".

Let € > 0 be given. Taking m in N such that ||| 8, — 8 I} < AT
we have || Ku(FY) — Ki(F,) ||| < e, as desired. 0

COROLLARY 2.4. We assume the hypothes:s of Theorem 2.3 and <

b
8, > converges to # uniformly s-a.e.. Then Z KA[(/ bmls,2(s))

dn(s))n] converges to K [exp ( f (s, x(s))dn(s))] uniformly.

Proof. By Theorem 2.3, let M be an upper bound of {|| 8., ||| m €
N}uU{]l 8]} and let U = max{M, 1}
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[ zk;;l,»ff (/ onsa(an) |32 k[ [ [ets.snans) ]

n=0

< St enlia-ol
< Ulnl@Yes(U 7] @h) | 6.~0] — 0

asm-—ooforall ke N,
Hence, by the property of uniform convergence,

Jim 3 2a6[( [ ot w(opancs)']
n=0 a

_ i% Jim 1 ( fbem(s,x(s))dn(s))"]

= Z KA[( / s,2(s)) dn(S)) ]

= KA exp LB(S,I(S))dn(s))], as desired. 3

We will treat the stability theorem in the measures. Let n and 9, (m =
1,2,--+) be in M(a,d) such that n, converges to n in the total variation
norm.

THEOREM 2.5. Let F*(z (f 8(s,z(s))dnn(s ))n Suppose that <

Tim > converges to 7 in the total variation norm. Then K,(F*) converges
to K, (F,) in the operator norm topology.

Proof. Let

T = sup{|x’f-x§| sl =2 S0 flwl s

(2.5)
20 L <118 ool 7 | and |32 | <118 ool 7] }-
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Then
I F{z) — Fulz) ||

26 _ [ ( f bﬁ(s,x(s))dnm(S))n - ( [ be(s,x(s))dn(s))n IS T

And

| KA(FI) — Ka(Fad oo

=sw([ 1 o FO iy 200y 0) + 2)ima(y
- [ ROy a0ty + 2)ima () P (@)

Co(B)

= sup [/m 1 /CO(B) (Ff’;”(/\‘fy+w) — F,(A77y(b) + )

YY) + <)) dmp(y) 7 dma(z)|”
(2.7)

<sp[ [ ([ 10p0ctyen) - B0 +o)

OHy) +2) | dmay)) (o))’

< sup Tm[-/f.?a /B | I,D()\-%\/b—_az +x) P dm(z)dm)‘(:c)}%

A0

A0

= | Cﬁéﬁw lpoe = T il ¥ llpoo -

< sumejl; [ A | A Vb —az+ 1) P dm(z)dm,\(:c)]%

Hence || Kx(F™) — Ki(Fo) || < T Now

b

([ ots.atnim@) - ([ ots.seano)" |
< (1 b, s)dls) ~ / "0, 2(5)idn(s) )
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X[ | (/:9(‘3,:1:(3)).;5%(3))“'1 + (/abg(sim(s))d??m(s))n_l
b ’ n—1
[ o260 ine)+ -+ ([ s, at00en0) ™ 1]

b b
| [ 86s,205)dmals) ~ [ 0ts,a(s)dnts) 1110 15" K)
1615 1 7m =711 K,

where K ={ 0 [ + | m P72 0 | -t [ 0 || 9 P72 + | 9 770
Hence

I KA(ET )% — Ks(Fo) llpeo < 110 5] 7 77 1] o K — 0

as m — 00 which implies the conclusion. (W]

IA

(A

From the above results, we have directly following Corollary.

COROLLARY 2.6. Suppose a bounded sequence < 8, > of Borel mea-
surable functions on B converges to 8 uniformly s-2.e. and a sequence
< 7p > of Borel measures on [a,b] converges to 1 in the total variation
norm. For three natural numbers n,m,{, and = in C(B), we let

Fd(z) = ( f b gm(s,x(s))dm(s))“

whenever the integral exists.
Then

Jm S L) = Ko [ 06, st0me)]
’ n=0 a

in the uniform operator topology.
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