STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$

K. S. Ryu and S. C. Yoo

ABSTRACT. In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8].

In this paper, we will prove the stability theorems of the operatorvalued function space integral over paths in abstract Wiener space $C_0(\mathbf{B})$.

1. Preliminaries

In this section, we describe some notations, definitions and known facts which will be needed in the subsequent sections.

Let $(\mathbf{B}, B(\mathbf{B}), m)$ be an abstract Wiener space. For $\lambda > 0$, let m_{λ} be the Borel measure on \mathbf{B} given by m_{λ} (B) = $m(\lambda^{-1}\mathbf{B})$ for Borel subset B of \mathbf{B} . Let $C(\mathbf{B})$ denote the set of all B-valued continuous functions on [a, b] and let $C_0(\mathbf{B})$ denote the set of all continuous functions on [a, b] which vanish at a. Then $C_0(\mathbf{B})$ is a real separable Banach space in the norm $\|y\|_{C_0(\mathbf{B})} \equiv \sup_{a \leq t \leq b} \|y(t)\|_{\mathbf{B}}$. For y in $C(\mathbf{B})$, y

has the unique decomposition $y = x + \xi$, where x is in $C_0(\mathbf{B})$ and ξ is in \mathbf{B} . Then Brownian motion in \mathbf{B} induces a probability measure $m_{\mathbf{B}}$ on $(C_0(\mathbf{B}), B(C_0(\mathbf{B})))$ which is mean-zero Gaussian, as following; let

Received September 30, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 28B05, 81Q05.

Key words and phrases: abstract Wiener space, scale-invariant measurable subset, (s-w)-integral.

This paper was supported by the research Fund in Hannam University in 1999.

 $\overrightarrow{t} = (t_1, t_2, \dots, t_n)$ be given with $a = t_0 < t_1 < t_2, \dots, t_n \leq b$. Let $T_{\overrightarrow{T}} : \mathbf{B}^n \to \mathbf{B}^n$ be given by

$$(1.1) \quad T_{\overrightarrow{t}}(x_1, x_2, \cdots, x_n) = (\sqrt{t_1 - t_0} \ x_1, \sqrt{t_1 - t_0} \ x_1 + \sqrt{t_2 - t_1} \ x_2, \cdots, \sum_{i=1}^n \sqrt{t_i - t_{i-1}} \ x_i).$$

Then we can find that $m_{\rm B}$ is well defined, countable additive, mean zero, stationary increment, and Gaussian measure.

By the change of variable theorem, we have

LEMMA 1.1 (WIENER INTEGRATION THEOREM). Let $\overrightarrow{t} = (t_1, t_2, \dots, t_n)$ be given with $a = t_0 < t_1 < t_2, \dots, t_n \le b$ and $f : \mathbf{B}^n \to \mathbf{C}$ be a Borel measurable function. Then

(1.2)
$$\int_{C_0(\mathbf{B})} f(y(t_1), y(t_2), \cdots, y(t_n)) dm_{\mathbf{B}}(y)$$

$$\stackrel{*}{=} \int_{\mathbf{B}^n} f \circ T_{\overrightarrow{t}}(x_1, x_2, \cdots, x_n) d(\prod^n m)(x_1, x_2, \cdots, x_n),$$

where by $\stackrel{*}{=}$, we mean that if either side exists, both sides exist and they are equal.

In [3], Chung considered the Borel subsets Ω_{λ} , $\lambda > 0$ and D of an abstract Wiener space \mathbf{B} which satisfies the following; for two positive reals, λ_1 and λ_2 , $\lambda_1\Omega_{\lambda_2} = \Omega_{\lambda_1\lambda_2}$ and \mathbf{B} is the disjoint union of this family of sets. Also $m(\Omega_{\lambda}) = 0$ if and only if $\lambda \neq 1$. Let $(\mathbf{B}, B(\mathbf{B}), \overline{m})$ be the completion of $(\mathbf{B}, B(\mathbf{B}), m)$. A subset N of \mathbf{B} is called the scale-invariant null subset (s-null set) provided that for all $\lambda > 0$, $m_{\lambda}(N) = 0$. A subset S of \mathbf{B} is called the scale-invariant measurable subset provided that for $\lambda > 0$, there is a m_{λ} -measurable subset S_{λ} of Ω_{λ} such that $S = (\bigcup_{\lambda > 0} S_{\lambda}) \cup D$ where D is a subset of $\mathbf{B} \setminus \bigcup_{\lambda > 0} \Omega_{\lambda}$. And, we say that the propositional function p(x) on \mathbf{B} holds s-a.e. if the set $\{x \mid p(x) \text{ does not true}\}$ is an s-null set.

DEFINITION 1.2. Let $L_{p,\infty}(\mathbf{B})$ $(1 \le p < \infty)$ be the class of all C-valued Borel measurable function ψ on \mathbf{B} such that for $\lambda > 0$, $|\psi(\lambda(\cdot))|^p$ is

m-integrable and

$$(1.3) \quad \|\psi\|_{p,\infty} \equiv \sup_{\lambda>0} \|\psi(\lambda(\cdot))\|_p = \sup_{\lambda>0} \left[\int_{\mathbf{B}} |\psi(\lambda x)|^p \ dm(x) \right]^{\frac{1}{p}}$$

is finite. For f and g in $L_{p,\infty}(\mathbf{B})$, we say that f is equivalent to g, denote $f \sim g$ if $\{\lambda x \in \mathbf{B} \mid f(x) \neq g(x)\}$ is an m_{λ} -null set for all $\lambda > 0$. Clearly \sim is an equivalent relation on $L_{p,\infty}(\mathbf{B})$. Hence we obtain a quotient space $L_{p,\infty}(\mathbf{B})/\sim$ which we denote $\mathcal{L}_{p,\infty}(\mathbf{B})$. From [8], we have $(\mathcal{L}_{p,\infty}(\mathbf{B}), \|\cdot\|_{p,\infty})$ is a Banach space.

DEFINITION 1.3. For $\lambda > 0$, we define an operator \mathcal{C}_{λ} on $\mathcal{L}_{p,\infty}(\mathbf{B})$ given by

$$(\mathcal{C}_{\lambda}\psi)(x) = \int_{\mathbf{R}} \psi(\lambda^{-\frac{1}{2}}x_1 + x) \, dm(x_1)$$

for ψ in $\mathcal{L}_{p,\infty}(\mathbf{B})$.

By the above definition, we easily check that for $\lambda > 0$, C_{λ} is bounded linear operator from $\mathcal{L}_{p,\infty}(\mathbf{B})$ into itself, and $\|\|C_{\lambda}\|\| \leq 1$.

DEFINITION 1.4. Let $\theta: [a,b] \times \mathbf{B} \to \mathbf{C}$ be a bounded Borel measurable function. We define the multiplication operator $M_{\theta(s,\cdot)}$ by $(M_{\theta(s,\cdot)}\psi)(x) = \theta(s,x)\psi(x)$. Let $\theta(s)$ denote the operator $M_{\theta(s,\cdot)}$ of multiplication by $\theta(s,\cdot)$ acting in $\mathcal{L}_{p,\infty}(\mathbf{B})$.

REMARK. In the above definition 1.4, $\theta(s)$ is a bounded linear operator from $\mathcal{L}_{p,\infty}(\mathbf{B})$ into itself and $\|\|\theta(s)\|\| \leq \sup_{x \in \mathbf{B}} |\theta(s,x)|$.

DEFINITION 1.5. Let $F: C(\mathbf{B}) \to \mathbf{C}$ be a function, let $\lambda > 0$ be given, let ψ be in $\mathcal{L}_{p,\infty}(\mathbf{B})$ and let x be in \mathbf{B} . We define

(1.5)
$$[K_{\lambda}(F)\psi](x) = \int_{C_0(\mathbf{B})} F(\lambda^{-\frac{1}{2}}y + x)\psi(\lambda^{-\frac{1}{2}}y(b) + x) dm_{\mathbf{B}}(y).$$

If $K_{\lambda}(F)$ exists and $K_{\lambda}(F)$ is a bounded linear operator from $\mathcal{L}_{p,\infty}(\mathbf{B})$ into itself for each $\lambda > 0$. We say that the operator-valued function space integral $K_{\lambda}(F)$ exists for all $\lambda > 0$.

We adopt the following notations and assumptions throughout this paper. Let $\theta: [a,b] \times \mathbf{B} \to \mathbf{C}$ be a bounded Borel measurable function by the upper bound M and let η be a \mathbf{C} -valued Borel measure on (a,b). $\eta = \mu + \sigma$ will be the decomposition of η into its continuous part μ and discrete part $\sigma = \sum_{p=1}^{h} \omega_p \delta_{\tau_p}$. And let

(1.6)
$$F_n(y) = \left(\int_{(a,b)} \theta(s,y(s)) \, d\eta(s) \right)^n$$

for y in $C_0(\mathbf{B})$. Let δ_{τ_p} be the Dirac measure with total mass one concentrated at τ_p .

DEFINITION 1.6. Let (Ω, μ) be a measure space and let $f: \Omega \to \mathcal{L}(\mathcal{L}_{p,\infty}(\mathbf{B}))$, the space of all bounded linear operator from $\mathcal{L}_{p,\infty}(\mathbf{B})$ to itself, be a function. We say that f is (s-w)-integrable if there exists $U \in \mathcal{L}(\mathcal{L}_{p,\infty}(\mathbf{B}))$ such that for ψ in $\mathcal{L}_{p,\infty}(\mathbf{B})$, $\varphi \in \mathcal{L}_{q,\infty}(\mathbf{B})$, ν a Borel measure on $(0, +\infty)$, $\lambda > 0$,

(1.7)
$$\int_{(0,+\infty)} \int_{\Omega_{\lambda}} \left[U\psi \right](x) \varphi(x) \, dm_{\lambda}(x) \, d\nu(\lambda)$$

$$= \int_{\Omega} \int_{(0,+\infty)} \int_{\Omega_{\lambda}} \left[f(\omega)\psi \right](x) \varphi(x) \, dm_{\lambda}(x) \, d\nu(\lambda) \, d\mu(\omega).$$

In this case, we write $U=(s-w)-\int_{\Omega}f(\omega)d\mu(\omega).$

Remark. We easily check that (s-w)-integral is well defined [8]. The conditions of (s-w)-integrable is rather weaker than the Bochner integral for the operator-valued function.

From [8], we have following facts.

THEOREM 1.7. If f is (s-w)-integrable on Ω , f is bounded and A is a measurable subset of (Ω, μ) , then for ψ in $\mathcal{L}_{p,\infty}(\mathbf{B})$, f is (s-w)-integrable on A. Moreover

$$\left[(s-w) - \int_A f(\omega) \, d\mu(\omega) \right] \psi(x) \; = \; \int_A \left[f(\omega) \psi \right] (x) \, d\mu(\omega) \quad \text{s - a.e.} \quad x.$$

Theorem 1.8. Let f be (s-w)-integrable on Ω such that |||f||| is bounded. Then

(1.8)
$$\| (s-w) - \int_{\Omega} f(\omega) \, d\mu(\omega) \| \leq \| \| f \|_{\infty} | \mu | (\Omega).$$

THEOREM 1.9. Let $F_n(x) = \left(\int_{(a,b)} \theta(s,x(s)), \ d\eta(s)\right)^n$ and θ be bounded by M, where η be a Borel measure on (a,b) and μ be a continuous part of η , $\sigma = \sum_{p=1}^h w_i \delta_{\tau_p}$ be a discrete part of η . Then for any $\lambda > 0$, there is an operator-valued function space integral $K_{\lambda}(F_n)$ of F_n such that

$$K_{\lambda}(F_{n}) = \sum_{q_{0}+\dots+q_{h}=n} n! \frac{\omega_{1}^{q_{1}} \cdots \omega_{h}^{q_{h}}}{q_{1}! \cdots q_{h}!} \sum_{j_{1}+\dots+j_{h-1}=q_{0}} (s-w)$$

$$- \int_{\triangle_{q_{0};j_{1},\dots,j_{h-1}}} \left[L_{0} \circ L_{1} \circ \cdots \circ L_{h}(s_{1},s_{2},\cdots,s_{h}) \right] d \left(\prod_{p=1}^{h+1} \prod_{i=1}^{j_{p}} \mu \right) (s_{p-1,i}),$$
where for $k = 0, 1, 2, \dots, h,$

$$L_{k} = C_{\alpha_{k-1,1}} \circ \theta(s_{k,1}) \circ C_{\alpha_{k-1,2}} \circ \theta(s_{k,2}) \circ \cdots \circ \theta(s_{k,j_{k-1}}) \circ \left\{ \theta(\tau_{k+1}) \right\}^{q_{k+1}}.$$

$$\triangle_{q_{0};j_{1},\dots,j_{h-1}} = \left\{ (s_{0,1},s_{0,2},\dots,s_{q_{0,j_{1}}},s_{1,1},s_{1,2},\dots,s_{h,j_{h-1}}) \mid a = s_{0,0} < s_{0,1} < \dots < s_{0,j_{1}} < \tau_{1} < s_{1,1} < \dots < s_{1,2} < \dots < s_{h-1,j_{h}} < \tau_{h} < s_{h,1} < \dots < s_{h,j_{h-1}} < b = \tau_{h+1} \right\}$$
for $p = 1, 2, \dots, h + 1$ and for $i = 1, 2, \dots, j_{p},$

$$\alpha_{p,i} = \lambda/(s_{p-1,i} - s_{p-1,i-1}),$$

$$\alpha_{p,j_{p}+1} = \lambda/(s_{p,0} - s_{p-1,j_{p}}).$$

Moreover, $|||K_{\lambda}(F_n)||| \leq (M |\eta|)^n$.

2. The main theorems

In this section, we will prove the stability theorem for the operatorvalued function space integral over paths in abstract Wiener space. DEFINITION 2.1. Let $<\theta_n>$ be a bounded sequence of the complexvalued Borel measurable function on B. We say that $<\theta_n>$ converges uniformly s-a.e. if there is a complex-valued function θ on B such that for each $\epsilon>0$, $\lim_{n\to 0} m_{\lambda}\{x: |\theta_n(x)-\theta(x)|>\epsilon\}=0$ uniformly for $\lambda>0$.

LEMMA 2.2. In the above, a sequence $< M_{\theta_n} >$ converges to M_{θ} as $n \to \infty$ in the operator-norm topology.

Proof. Suppose a sequence $<\theta_n>$ is bounded by M and ψ is in $\mathcal{L}_{p,\infty}(\mathbf{B})$ with $\|\psi\|_{p,\infty}=1$. Let $\epsilon>0$ be given. Then for $\lambda>0$, there is a $\delta>0$ such that for every Borel subsets K_{λ} of Ω_{λ} with $m_{\lambda}(K_{\lambda})<\delta$,

(2.1)
$$\int_{K_{\lambda}} |\psi(x)|^{p} dm_{\lambda}(x) < \epsilon$$

which implies that for any scale-invariant measurable subset K with $m_{\lambda}(K) < \delta$ for all $\lambda > 0$, $\int_{K} |\psi(x)|^{p} dm_{\lambda}(x) < \epsilon$ for all $\lambda > 0$, for example $K = \bigcup_{k \geq 0} K_{\lambda}$.

Since $<\theta_n>$ converges to θ uniformly s-a.e., there is an n_0 in \mathbb{N} such that $n \geq n_0$ implies $m_{\lambda}\{x \in \mathbf{B} | |\theta_{\mathbf{n}}(\mathbf{x}) - \theta(\mathbf{x})| > \epsilon\} < \delta$ for all $\lambda > 0$. Let $T_n = \{x \in \mathbf{B} | |\theta_{\mathbf{n}}(\mathbf{x}) - \theta(\mathbf{x})| > \epsilon\}$ for $n \in \mathbb{N}$. Then T_n is a scale-invariant measurable subset and for $n \geq n_0$, $m_{\lambda}(T_n) < \delta$ for all $\lambda > 0$, and so for $\|\psi\|_{p,\infty} = 1$,

$$\sup_{\lambda>0} \left[\int_{\Omega_{\lambda}} |M_{\theta_{n}} \psi(x) - M_{\theta} \psi(x)|^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$= \sup_{\lambda>0} \left[\int_{\Omega_{\lambda}-T_{n}} |\theta_{n}(x) - \theta(x)|^{p} |\psi(x)|^{p} dm_{\lambda}(x) + \int_{T_{n}} |\theta_{n}(x) - \theta(x)|^{p} |\psi(x)|^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$\leq \sup_{\lambda>0} \left[\epsilon^{p} \int_{\Omega_{\lambda}} |\psi(x)|^{p} dm_{\lambda}(x) + (2M)^{p} \int_{T_{n}} |\psi(x)|^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$\leq \sup_{\lambda>0} \left[\epsilon^p \int_{\Omega_{\lambda}} |\psi(x)|^p dm_{\lambda}(x) + (2M)^p \epsilon \right]^{\frac{1}{p}}$$

$$\leq \epsilon + 2M \epsilon^{\frac{1}{p}}.$$

Hence for $n \geq n_0$,

$$\sup_{\|\psi\|_{p,\infty}=1} \| (M_{\theta_n} - M_{\theta})\psi \|_{p,\infty} \le \epsilon + 2M\epsilon^{\frac{1}{p}}, \text{ as desired.} \qquad \Box$$

THEOREM 2.3. Let $F_n^m(x) = \left(\int_a^b \theta_m(s,x(s)) d\eta(s)\right)^n$ as a given in Theorem 1.9. Suppose that for all $n \in \mathbb{N}$, θ_m is uniform bounded Borel measurable on $[a,b] \times \mathbf{B}$ and there is a bounded Borel measurable function θ from $[a,b] \times \mathbf{B}$ to \mathbf{C} such that for η s-a.e., $\langle \theta_m(s,\cdot) \rangle$ converges to $\theta(s,\cdot)$ uniformly.

Then $K_{\lambda}(F_n^m) \to K_{\lambda}(F_n)$ in the operator norm topology.

Proof. Let $L_k^{(m)} = \mathcal{C}_{\alpha_{k+1,1}} \circ \theta_m(s_{k,1}) \circ \mathcal{C}_{\alpha_{k+1,2}} \circ \theta_m(s_{k,2}) \circ \cdots \circ \mathcal{C}_{\alpha_{k+1,j_{k+1}}} \circ \theta_m(s_{k,j_{k+1}}) \circ \left\{ \theta_m(\tau_{k+1}) \right\}^{q_{k+1}} \text{ for } m \in \mathbb{N} \text{ and for } k = 0, 1, 2, \cdots, h \text{ where } (s_{0,1}, \cdots, s_{h,j_{h+1}}) \text{ is in } \triangle_{q_0;j_1,\cdots,j_{h+1}} \text{ in Theorem 1.9 and } \left[\theta_m(\tau_{h+1}) \right]^{q_{h+1}} = \left[\theta(\tau_{h+1}) \right]^{q_{h+1}} = I, \text{ an identity map.}$ Let $\left\{ \| \theta_m \|_{\infty} \| m \in \mathbb{N} \right\} \cup \left\{ \| \theta \| \right\} \text{ be bounded by } M, \text{ let } U = I = I \text{ for } I = I \text{ an identity map.} \right\}$

Let $\left\{ \parallel \theta_m \parallel_{\infty} \mid m \in \mathbf{N} \right\} \cup \left\{ \parallel \theta \parallel \right\}$ be bounded by M, let $U = \max \left\{ M, 1 \right\}$. For $u = 0, 1, \dots, h$, $v = 1, 2, \dots, j_{u+1}$, let

$$\begin{array}{lll} A_{u,v}^{(m)} & = & L_0^{(m)} \circ L_1^{(m)} \circ \cdots \circ L_{u-1}^{(m)} \circ \mathcal{C}_{\alpha_{u+1,1}} \circ \theta_m(s_{u,1}) \circ \cdots \circ \mathcal{C}_{\alpha_{u-1,v-1}} \\ & & \circ \theta_m(s_{u,v-1}) \circ \mathcal{C}_{\alpha_{u-1,v}} \circ \theta(s_{u,v}) \circ \cdots \circ \mathcal{C}_{\alpha_{u-1,j_{u-1}}} \\ & & \circ \theta(s_{u,j_{u-1}}) \circ (\theta(\tau_{j_{u-1}}))^{q_{u+1}} \circ L_{u+1} \circ \cdots \circ L_h, \end{array}$$

and

$$A_{u+1,0}^{(m)} = L_0^{(m)} \circ L_1^{(m)} \circ \cdots \circ L_{u-1}^{(m)} \circ L_u^{(m)} \circ L_{u+1} \circ \cdots \circ L_h^{(m)}.$$

Then, by Theorem 1.8 and Theorem 1.9,

$$\| L_{0}^{(m)} \circ L_{1}^{(m)} \circ \cdots \circ L_{h}^{(m)} - L_{0} \circ L_{1} \circ \cdots \circ L_{h} \|$$

$$\leq \sum_{u=0}^{h} \left[\left\{ \sum_{v=1}^{j_{u+1}} \| A_{u,v}^{(m)} - A_{u,v-1}^{(m)} \| \right\} + \| A_{u+1,0}^{(m)} - A_{u,j_{u-1}}^{(m)} \| \right]$$

$$\leq \| \theta_{m} - \theta \| \left[\sum_{u=0}^{h} j_{u+1} U^{q_{0}-1} + \sum_{u=0,q_{u-1}\neq 0}^{h} q_{u+1} U^{q_{u+1}-1} \right]$$

$$\leq \| \theta_{m} - \theta \| \| n U^{n}.$$

Hence

$$(2.4) \qquad \begin{aligned} \| K_{\lambda}(F_{n}^{m}) - K_{\lambda}(F_{n}) \| \\ &\leq \sum_{q_{0} + \dots + q_{h} = n} n! \frac{|\omega_{1}|^{q_{1}} \dots |\omega_{h}|^{q_{h}}}{q_{1}! \dots q_{h}!} \\ &\sum_{j_{1} + \dots + j_{h+1} = q_{0}} \int_{\triangle_{q_{0};j_{1},\dots,j_{h+1}}} \| \theta_{m} - \theta \| \| nU^{n} d \Big(\prod_{p=1}^{h+1} \prod_{i=1}^{j_{p}} \mu \Big) (s_{p-1,i}) \\ &\leq nU^{n} \| \| \theta_{m} - \theta \| \| \mu | (a,b)^{n}. \end{aligned}$$

Let $\epsilon > 0$ be given. Taking m in \mathbb{N} such that $\|\|\theta_m - \theta\|\| < \frac{\epsilon}{nU^n|\eta|^n(a,b)}$, we have $\|\|K_{\lambda}(F_n^m) - K_{\lambda}(F_n)\|\| < \epsilon$, as desired.

COROLLARY 2.4. We assume the hypothesis of Theorem 2.3 and $<\theta_n>$ converges to θ uniformly s-a.e.. Then $\sum_{n=0}^{\infty}\frac{1}{n!}K_{\lambda}\Big[\Big(\int_a^b\theta_m(s,x(s))d\eta(s)\Big)^n\Big]$ converges to $K_{\lambda}\Big[\exp\Big(\int_a^b\theta(s,x(s))d\eta(s)\Big)\Big]$ uniformly.

Proof. By Theorem 2.3, let M be an upper bound of $\{\|\theta_m\|_{\infty}| m \in \mathbb{N}\} \cup \{\|\theta\|\}$ and let $U = \max\{M, 1\}$

$$\| \sum_{n=0}^{k} \frac{1}{n!} K_{\lambda} \left[\left(\int_{a}^{b} \theta_{m}(s, x(s)) d\eta(s) \right)^{n} \right] - \sum_{n=0}^{k} \frac{1}{n!} K_{\lambda} \left[\left(\int_{a}^{b} \theta(s, x(s)) d\eta(s) \right)^{n} \right] \|$$

$$\leq \sum_{n=1}^{k} \frac{1}{(n-1)!} U^{n} | \eta |^{n} (a, b) \| \theta_{n} - \theta \|$$

$$\leq U | \eta | (a, b) \exp(U | \eta | (a, b)) \| \theta_{n} - \theta \| \longrightarrow 0$$

as $m \longrightarrow \infty$ for all $k \in \mathbb{N}$.

Hence, by the property of uniform convergence,

$$\lim_{m \to \infty} \sum_{n=0}^{\infty} \frac{1}{n!} K_{\lambda} \left[\left(\int_{a}^{b} \theta_{m}(s, x(s)) d\eta(s) \right)^{n} \right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \lim_{m \to \infty} K_{\lambda} \left[\left(\int_{a}^{b} \theta_{m}(s, x(s)) d\eta(s) \right)^{n} \right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} K_{\lambda} \left[\left(\int_{a}^{b} \theta(s, x(s)) d\eta(s) \right)^{n} \right]$$

$$= K_{\lambda} \left[\exp \left(\int_{a}^{b} \theta(s, x(s)) d\eta(s) \right) \right], \text{ as desired.} \square$$

We will treat the stability theorem in the measures. Let η and η_m ($m = 1, 2, \cdots$) be in M(a, b) such that η_n converges to η in the total variation norm.

THEOREM 2.5. Let $F_n^m(x) = \left(\int_a^b \theta(s, x(s)) d\eta_m(s)\right)^n$. Suppose that $<\eta_m>$ converges to η in the total variation norm. Then $K_\lambda(F_n^m)$ converges to $K_\lambda(F_n)$ in the operator norm topology.

Proof. Let

(2.5)
$$T_{m} = \sup \left\{ |x_{1}^{n} - x_{2}^{n}| : |x_{1} - x_{2}| \leq ||\theta||_{\infty} |\eta|, |x_{1}| \leq ||\theta||_{\infty} |\eta_{m}| \text{ and } |x_{2}| \leq ||\theta||_{\infty} |\eta| \right\}.$$

Then

(2.6)
$$\|F_n^m(x) - F_n(x)\|$$

$$= \|\left(\int_a^b \theta(s, x(s)) \, d\eta_m(s)\right)^n - \left(\int_a^b \theta(s, x(s)) \, d\eta(s)\right)^n \| \le T_m.$$

And

$$\| K_{\lambda}(F_{n}^{m})\psi - K_{\lambda}(F_{n})\psi \|_{p,\infty}$$

$$= \sup_{\lambda>0} \left[\int_{\Omega_{\lambda}} | \int_{C_{0}(\mathbf{B})} F_{n}^{m}(\lambda^{-\frac{1}{2}}y + x)\psi(\lambda^{-\frac{1}{2}}y(b) + x)dm_{\mathbf{B}}(y) \right]^{\frac{1}{p}}$$

$$- \int_{C_{0}(\mathbf{B})} F_{n}(\lambda^{-\frac{1}{2}}y + x)\psi(\lambda^{-\frac{1}{2}}y(b) + x)dm_{\mathbf{B}}(y) |^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$= \sup_{\lambda>0} \left[\int_{\Omega_{\lambda}} | \int_{C_{0}(\mathbf{B})} \left(F_{n}^{m}(\lambda^{-\frac{1}{2}}y + x) - F_{n}(\lambda^{-\frac{1}{2}}y(b) + x) \right) \right.$$

$$\psi(\lambda^{-\frac{1}{2}}y(b) + x) dm_{\mathbf{B}}(y) |^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$\leq \sup_{\lambda>0} \left[\int_{\Omega_{\lambda}} \left(\int_{C_{0}(\mathbf{B})} | (F_{n}^{m}(\lambda^{-\frac{1}{2}}y + x) - F_{n}(\lambda^{-\frac{1}{2}}y(b) + x)) \right.$$

$$\psi(\lambda^{-\frac{1}{2}}y(b) + x) | dm_{\mathbf{B}}(y) \right)^{p} dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$\leq \sup_{\lambda>0} T_{m} \left[\int_{\Omega_{\lambda}} \int_{\mathbf{B}} | \psi(\lambda^{-\frac{1}{2}}\sqrt{b - az} + x) |^{p} dm(z) dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$\leq \sup_{\lambda>0} T_{m} \int_{\mathbf{B}} \left[\int_{\Omega_{\lambda}} | \psi(\lambda^{-\frac{1}{2}}\sqrt{b - az} + x) |^{p} dm(z) dm_{\lambda}(x) \right]^{\frac{1}{p}}$$

$$= \| C_{\lambda} \psi \|_{p,\infty} = T_{m} \| \psi \|_{p,\infty} .$$

Hence $\parallel K_{\lambda}(F_n^m) - K_{\lambda}(F_n) \parallel < T_m$. Now

$$\left| \left(\int_{a}^{b} \theta(s, x(s)) d\eta_{m}(s) \right)^{n} - \left(\int_{a}^{b} \theta(s, x(s)) d\eta(s) \right)^{n} \right|$$

$$\leq \left(\left| \int_{a}^{b} \theta(s, x(s)) d\eta_{m}(s) - \int_{a}^{b} \theta(s, x(s)) d\eta(s) \right| \right)$$

$$\times \left[\mid \left(\int_{a}^{b} \theta(s, x(s)) d\eta_{m}(s) \right)^{n-1} + \left(\int_{a}^{b} \theta(s, x(s)) d\eta_{m}(s) \right)^{n-1} \right]$$

$$\int_{a}^{b} \theta(s, x(s)) d\eta(s) + \dots + \left(\int_{a}^{b} \theta(s, x(s)) d\eta(s) \right)^{n-1} \mid \left[\int_{a}^{b} \theta(s, x(s)) d\eta_{m}(s) - \int_{a}^{b} \theta(s, x(s)) d\eta(s) \mid (\parallel \theta \parallel_{\infty}^{n-1} K) \right]$$

$$\leq \parallel \theta \parallel_{\infty}^{n} \mid \eta_{m} - \eta \mid K,$$

where $K = \mid \eta_m \mid^{n-1} + \mid \eta_m \mid^{n-2} \mid \eta \mid + \dots + \mid \eta_m \mid \mid \eta \mid^{n-2} + \mid \eta \mid^{n-1}$. Hence

$$\| K_{\lambda}(F_{n}^{m})\psi - K_{\lambda}(F_{n})\psi \|_{p,\infty} \leq \| \theta \|_{\infty}^{n} \| \eta_{m} - \eta \| \| \psi \|_{p,\infty} K \longrightarrow 0$$
 as $m \longrightarrow \infty$ which implies the conclusion.

From the above results, we have directly following Corollary.

COROLLARY 2.6. Suppose a bounded sequence $<\theta_n>$ of Borel measurable functions on **B** converges to θ uniformly s-a.e. and a sequence $<\eta_n>$ of Borel measures on [a,b] converges to η in the total variation norm. For three natural numbers n,m,l, and x in $C(\mathbf{B})$, we let

$$F_n^{m,l}(x) = \left(\int_a^b \theta_m(s, x(s)) d\eta_l(s)\right)^n$$

whenever the integral exists.

Then

$$\lim_{m,l\longrightarrow\infty}\sum_{n=0}^{\infty}\frac{1}{n!}K_{\lambda}(F_{n}^{m,l}(x))\ =\ K_{\lambda}\Big[\exp\Big(\int_{a}^{b}\theta(s,x(s))d\eta(s)\Big)\Big]$$

in the uniform operator topology.

References

- [1] K. S. Chang and K. S. Ryu, Stability theorems for the operator-valued function space integral, Gaussian Random Field, World Scientific, 1991, pp. 158-171.
- [2] J. S. Chang, Stability theorems for the Feynman integral; The $L(L_1(\mathbf{R}), \mathbf{C_0}(\mathbf{R}))$ theory, Supplemento ai Rendiconti del Circolo Mathematico di Palermo. Serie II, 17 (1987), 135–151.
- [3] D. M. Chung, Scale-invariant measurability in abstract Wiener space, Pacific J. Math. 130 (1987), 27-40.

K. S. Ryu and S. C. Yoo

- [4] G. W. Johnson and D. L. Skoug, Stability theorems for the Feynman integral, Supplemento ai Rendiconti del Circolo Mathematico di Palermo. Serie II, 8 (1988), 361–377.
- [5] G. W. Johnson, A bounded convergence theorems for the Feynman integral, J. Math. phys. 25 (1984), no. 5.
- [6] G. W. Johnson and M. L. Lapidus, Generalized Dyson Seres, Generalized Feynman Diagrams, the Feynman integral and Feynman's operator caculus. Mem. Amer. Soc. 62 (1986), no. 351.
- [7] K. S. Ryu, The Wiener integral over paths in abstract Wiener space, J. of K.M.S. 29 (1992), no. 2, 317-331.
- [8] K. S. Ryu and S. C. Yoo, The existence theorem of the operator-valued function space integral over paths in abstract Wiener space, (to submitted).
- K. S. Ryu, Department of Mathematics, Hannam University, Taejon 306-791, Korea

E-mail: ksr@math.hannam.ac.kr

S. C. Yoo, Jaeneung College, Inchun 401-714, Korea *E-mail*: yky3ng@mail.jnc.ac.kr