• Title/Summary/Keyword: B-ideal

Search Result 536, Processing Time 0.025 seconds

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

ON EXCHANGE qb-IDEALS

  • CHEN, HUANYIN;CHEN, MIAOSEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • In this paper, we establish necessary and sufficient conditions for an exchange ideal to be a qb-ideal. It is shown that an exchange ideal I of a ring R is a qb-ideal if and only if when-ever $a{\simeq}b$ via I, there exists u ${\in} I_q^{-1}$ such that a = $ubu_q^{-1}$ and b = $u_q^{-1}$. This gives a generalization of the corresponding result of exchange QB-rings.

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

  • Garimella, Ramesh V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.737-746
    • /
    • 1999
  • For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1$(G, B) be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is cnotained in a regular maximal ideal, then $L^1$(G, B) contains no nontrivial separating idal. As a consequence we deduce some automatic continuity results for $L^1$(G, B).

  • PDF

k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B;Hong, S.M
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.499-505
    • /
    • 1997
  • This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

  • PDF

ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS

  • Hani A. Khashan;Ece Yetkin Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.717-734
    • /
    • 2024
  • Let R be a commutative ring with identity and m, n be positive integers. In this paper, we introduce the class of weakly (m, n)-prime ideals generalizing (m, n)-prime and weakly (m, n)-closed ideals. A proper ideal I of R is called weakly (m, n)-prime if for a, b ∈ R, 0 ≠ amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties and characterizations of weakly (m, n)-prime ideals with many supporting examples. Furthermore, we investigate weakly (m, n)-prime ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behaviour of this class of ideals in idealization and amalgamated rings.

EXTENSIONS OF STRONGLY π-REGULAR RINGS

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.555-565
    • /
    • 2014
  • An ideal I of a ring R is strongly ${\pi}$-regular if for any $x{\in}I$ there exist $n{\in}\mathbb{N}$ and $y{\in}I$ such that $x^n=x^{n+1}y$. We prove that every strongly ${\pi}$-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x{\in}I$ there exist two distinct m, $n{\in}\mathbb{N}$ such that $x^m=x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly ${\pi}$-regular and for any $u{\in}U(I)$, $u^{-1}{\in}\mathbb{Z}[u]$.

SOME RESULTS ON 1-ABSORBING PRIMARY AND WEAKLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1069-1078
    • /
    • 2021
  • Let R be a commutative ring with identity. A proper ideal I of R is called 1-absorbing primary ([4]) if for all nonunit a, b, c ∈ R such that abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. The concept of 1-absorbing primary ideals in a polynomial ring, in a PID and in idealization of a module is studied. Moreover, we introduce weakly 1-absorbing primary ideals which are generalization of weakly prime ideals and 1-absorbing primary ideals. A proper ideal I of R is called weakly 1-absorbing primary if for all nonunit a, b, c ∈ R such that 0 ≠ abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. Some properties of weakly 1-absorbing primary ideals are investigated. For instance, weakly 1-absorbing primary ideals in decomposable rings are characterized. Among other things, it is proved that if I is a weakly 1-absorbing primary ideal of a ring R and 0 ≠ I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero with respect to I1I2I3, then I1I2 ⊆ I or I3 ⊆ I.

(m, n)-CLOSED δ-PRIMARY IDEALS IN AMALGAMATION

  • Mohammad Hamoda;Mohammed Issoual
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.575-583
    • /
    • 2024
  • Let R be a commutative ring with 1 ≠ 0. Let Id(R) be the set of all ideals of R and let δ : Id(R) → Id(R) be a function. Then δ is called an expansion function of the ideals of R if whenever L, I, J are ideals of R with J ⊆ I, then L ⊆ δ (L) and δ (J) ⊆ δ (I). Let δ be an expansion function of the ideals of R and m ≥ n > 0 be positive integers. Then a proper ideal I of R is called an (m, n)-closed δ-primary ideal (resp., weakly (m, n)-closed δ-primary ideal ) if am ∈ I for some a ∈ R implies an ∈ δ(I) (resp., if 0 ≠ am ∈ I for some a ∈ R implies an ∈ δ(I)). Let f : A → B be a ring homomorphism and let J be an ideal of B. This paper investigates the concept of (m, n)-closed δ-primary ideals in the amalgamation of A with B along J with respect to f denoted by A ⋈f J.

The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions

  • Shokri, Abbas Ali;Shokri, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.189-195
    • /
    • 2014
  • Let X be a compact metric space, B be a unital commutative Banach algebra and ${\alpha}{\in}(0,1]$. In this paper, we first define the vector-valued (B-valued) ${\alpha}$-Lipschitz operator algebra $Lip_{\alpha}$ (X, B) and then study its structure and characterize of its maximal ideal space.