ON EXCHANGE qb-IDEALS

HUANYIN CHEN AND MIAOSEN CHEN

ABSTRACT. In this paper, we establish necessary and sufficient conditions for an exchange ideal to be a qb-ideal. It is shown that an exchange ideal I of a ring R is a qb-ideal if and only if whenever $a \overline{\sim} b$ via I, there exists $u \in I_q^{-1}$ such that $a = ubu_q^{-1}$ and $b = u_q^{-1}au$. This gives a generalization of the corresponding result of exchange QB-rings.

In [3], Ara et al. discovered a new class of rings, the QB-rings. We say that R is a QB-ring if aR + bR = R with $a, b \in R$ implies that $a + by \in R_q^{-1}$ for a $y \in R$. An ideal I of a ring R is a QB-ideal in case aR + bR = R with $a \in 1 + I, b \in R$ implies that $a + by \in R_q^{-1}$ for a $y \in R$, where $R_q^{-1} = \{u \in R \mid \exists a, b \in R \text{ such that } (1 - ua) \bot (1 - bu)\}$. In this paper, we introduce the notation of qb-ideal as a natural generalization of that of QB-ideal. Let I be an ideal of a ring R. We say that I is a qb-ideal of R in case aR + bR = R with $a \in I, b \in R$ implies that $a + by \in I_q^{-1}$ for a $y \in R$. Recall that R is an exchange ring if for every right R-module A and any two decompositions $A = M \oplus N = \bigoplus_{i \in I} A_i$, where $M_R \cong R$ and the index set I is finite, then there exist submodules $A'_i \subseteq A_i$ such that $A = M \oplus (\bigoplus_{i \in I} A'_i)$. An ideal I of a ring R is an exchange ideal provided that for every $x \in I$ there exist an idempotent $e \in I$ and elements $e \in I$ such that e = xr = x + s - xs (cf. [1] and [11]). Clearly, every ideal of an exchange ring is an exchange ideal.

The main purpose of this paper is to establish necessary and sufficient conditions for an exchange ideal of a ring to be a qb-ideal. We prove that an exchange ideal I of a ring R is a qb-ideal if and only if whenever $a \overline{\sim} b$

Received May 16, 2003.

2000 Mathematics Subject Classification: 16E50, 16U99.

Key words and phrases: exchange ideal, qb-ideal.

via I, there exists $u \in I_q^{-1}$ such that $a = ubu_q^{-1}$ and $b = u_q^{-1}au$. This gives a generalization of the corresponding result of exchange QB-rings.

Throughout, all rings are associative with identity. An element $x \in R$ is regular provided that x = xyx for a $y \in R$. We say that $x, y \in R$ are centrally orthogonal, in symbols $x \perp y$, if xRy = 0 and yRx = 0. We use R_q^{-1} to denote $\{u \in R \mid \exists a, b \in R \text{ such that } (1 - ua) \bot (1 - bu)\}$. If $u \in R_q^{-1}$, we use u_q^{-1} to denote some fixed $v \in R$ with $(1 - uv) \bot (1 - vu)$. Set $I_q^{-1} = R_q^{-1} \cap (1 + I)$.

LEMMA 1. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) Whenever ax + b = 1 with $a \in I, x, b \in R$, there exists $y \in R$ such that $a + by \in I_a^{-1}$.
 - *Proof.* $(1) \Rightarrow (2)$ is clear.
- $(2) \Rightarrow (1)$ Suppose that aR + bR = R with $a \in I, b \in 1 + I$. Then ax + by = 1 for some $x, y \in R$. So we have $z \in R$ such that $a + byz \in I_q^{-1}$, as required.

THEOREM 2. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) For any regular $x \in I$, there exists $u \in I_q^{-1}$ such that x = xux.
- *Proof.* (1) \Rightarrow (2) Given any regular $x \in I$, we have a $y \in R$ such that x = xyx. Hence x = xzx and $z = yxy \in I$. From zx + (1 zx) = 1 with $z \in I$, we can find a $w \in R$ such that $z + (1 zx)w = u \in I_q^{-1}$. Therefore x = xzx = x(z + (1 zx))x = xux.
- $(2)\Rightarrow (1)$ Suppose that ax+b=1 with $a\in I, x,b\in R$. Then $b\in 1+I$. Since I is an exchange ideal of R, there exists an idempotent $e\in R$ such that e=bs and 1-e=(1-b)t for some $s,t\in R$ by [1,Lemma 1.1]. So (1-e)axt+e=1; hence, (1-e)axt(1-e)a=(1-e)a. This infers that $(1-e)a\in I$ is regular, and then we have a $u\in I_q^{-1}$ such that (1-e)a=(1-e)au(1-e)a. Set u(1-e)a=f. Clearly, $f\in I$ and fxt+ue=u, so f(x+ue)+(1-f)ue=u. As $u\in R_q^{-1}$, we have $a,b\in R$ such that $(1-ua)\bot(1-bu)=0$. Then we can take $u_q^{-1}=a=b-aub$. Let $g=(1-f)ueu_q^{-1}(1-f)$. From (1-f)ue=(1-f)u, we have $(1-f)ue=(1-f)uu_q^{-1}(1-f)=g$. Clearly, fg=gf=0; hence, f(x+ue)=fu and g(1-f)u=gu. Therefore (f+g)u=u. That

is, $u(a + bs(v(1 - f) - a))(1 + fuev(1 - f))u = u((1 - e)a + bsv(1 - f))(1 + fuev(1 - f))u = (u(1 - e)a + ueu_q^{-1}(1 - f))(1 + fueu_q^{-1}(1 - f))u = (f + ueu_q^{-1}(1 - f)(1 - fueu_q^{-1}(1 - f)))(1 + fueu_q^{-1}(1 - f))u = (f + (1 - f)ueu_q^{-1}(1 - f))u = u$. Let $y = s(u_q^{-1}(1 - f) - a)$ and $w = (1 + fueu_q^{-1}(1 - f))u$. Then w(a + by)w = w with $w \in R_q^{-1}$. As $u \in 1 + I$, we deduce that $w \in 1 + I$. On the other hand, $b \in 1 + I$, we have $y \in 1 + I$. Therefore $a + by \in 1 + I$. Similarly to [6, Theorem 1], we deduce that $a + by \in R_q^{-1}$, as required.

COROLLARY 3. I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) For any regular $x \in I$, there exists $u \in I_q^{-1}$ such that $ux \in I$ is an idempotent.

Proof. (1) \Rightarrow (2) is clear by Theorem 2.

 $(2)\Rightarrow (1)$ Suppose that ax+b=1 with $a\in I, x,b\in R$. Since I is an exchange ideal of R, by [1, Lemma 1.1], we have an idempotent $e\in 1+I$ such that e=bs and 1-e=(1-b)t for some $s,t\in R$. Analogously to Theorem 2, we claim that $(1-e)a\in I$ is regular. Hence there exists $u\in I_q^{-1}$ such that u(1-e)a=f is an idempotent of R. So fxt+ue=u, whence f(x+ue)+(1-f)ue=u. Let $g=(1-f)ueu_q^{-1}(1-f)$. Similarly to Theorem 2, we have w(a+by)w=w with $w\in I_q^{-1}$, where $y=s(u_q^{-1}(1-f)-a)$ and $w=(1+fueu_q^{-1}(1-f))u$. Clearly, $y\in 1+I$, and then $a+by\in 1+I$. Therefore $a+by\in I_q^{-1}$. It follows by Lemma 1 that I is a qb-ideal.

COROLLARY 4. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1)I is a qb-ideal.
- (2) Whenever Ra + Rb = R with $a \in I, b \in R$ implies that $a + zb \in I_q^{-1}$ for $a z \in R$.
- (3)Whenever ax + b = 1 with $a, x \in I, b \in R$, there exists $z \in R$ such that $x + zb \in I_q^{-1}$.

Proof. (1) \Rightarrow (2) In view of Theorem 2, I^{op} is a qb-deal of R^{op} . Therefore Ra + Rb = R with $a \in I, b \in R$ implies that $a + zb \in I_q^{-1}$ for a $z \in R$. (2) \Rightarrow (3) is obvious. (3) \Rightarrow (1) Given any regular $x \in I$, analogously to Theorem 2, we have a $y \in I$ such that x = xyx and y = yxy. From xy + (1 - xy) = 1, there exists a $z \in R$ such that

 $y+z(1-xy)=u\in I_q^{-1}$. Then $x=xyx=x\big(y+z(1-xy)\big)x=xux$. It follows by Theorem 2 that I is a qb-ideal. \Box

THEOREM 5. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) For any regular $x \in I$, there exist idempotent $e \in I$ and $u \in I_q^{-1}$ such that x = eu.
- *Proof.* (1) \Rightarrow (2) For any regular $x \in I$, there exists a $y \in R$ such that x = xyx and y = yxy. Similarly to Theorem 2, we see that $y \in I$. From xy + (1-xy) = 1, there exists $s \in R$ such that $x + (1-xy)s = u \in I_q^{-1}$. Set e = xy. Then x = xyx = x(x + (1-xy)s) = eu, as required.
- $(2)\Rightarrow (1)$ Suppose that ax+b=1 with $a\in I, x,b\in R$. Since I is an exchange ideal, there exists an idempotent $e\in R$ such that e=bs and 1-e=(1-b)t for some $s,t\in R$. Analogously to Theorem $2, (1-e)a\in I$ is regular. So we have a $u\in R_q^{-1}$ and an idempotent $f\in I$ such that (1-e)a=fu. Hence fuxt+e=1. Thus fuxt(1-f)+e(1-f)=1-f, which shows that $a+bs((1-f)u-a)=(1-e)a+e(1-f)u=fu+e(1-f)u=(1-fuxt(1-f))u\in R_q^{-1}$. Since $f\in I$ and $u\in 1+I$, we have $a+bs((1-f)u-a)\in 1+I$. Thus $a+bs((1-f)u-a)\in I_q^{-1}$. According to Lemma 1, we complete the proof.

COROLLARY 6. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) For any regular $x \in I$, there exist idempotent $e \in I$ and $u \in I_q^{-1}$ such that x = ue.

Proof. In view of Theorem 2, I is qb-ideal of R if and only if I^{op} is a qb-ideal of R^{op} . Therefore we get the result by Theorem 5.

THEOREM 7. Let I be an ideal of a regular ring. If eRe is a QB-ring for all idempotents $e \in I$, then I is a qb-ideal of R.

Proof. Given any regular $x \in I$, by [10, Lemma 1.1], there exists an idempotent $e \in I$ such that $x \in eRe$. Since eRe is a regular QB-ring, by Corollary 6, we have an idempotent $efe \in eRe$ and an element $eue \in (eRe)_q^{-1}$ such that x = (eue)(exe) = (eue+1-e)(exe). Clearly, $exe \in R$ is an idempotent. As $eue \in (eRe)_q^{-1}$, we have $(e-eue(eue)_q^{-1})(eRe)(e-(eue)_q^{-1}(eue)) = 0$; and then $(1-(eue+1-e)((eue)_q^{-1}+1-e))R(1-eue)$

 $((eue)_q^{-1}+1-e)((eue)+1-e))=0$. Likewise, we have $(1-((eue)_q^{-1}+1-e)(eue+1-e))R(1-(eue+1-e)((eue)_q^{-1}+1-e))=0$. This means that $eue+1-e\in R_q^{-1}$. Moreover, $eue+1-e\in 1+I$. Therefore we complete the proof by Corollary 6 again.

Recall that an ideal I of a ring R is strongly π -regular provided that for any $x \in I$ there exist $n(x) \in \mathbb{N}$ and $y \in R$ such that $x^{n(x)} = x^{n(x)}y$.

COROLLARY 8. Every strongly π -regular ideal of a regular ring is a qb-ideal.

Proof. Let I be a strongly π -regular ideal of a regular ring R. Given any idempotent $e \in I$, then eRe is a strongly π -regular ring. So eRe has stable range one; hence, eRe is a QB-ring. Therefore we get the result by Theorem 7.

We say that $a \overline{\sim} b$ via I if there exist $x, y, z \in I$ such that a = zbx, b = xay, x = xyx = xzx.

LEMMA 9. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) $a \overline{\sim} b$ via I.
- (2) There exist some $x, y \in I$ such that a = xby, b = yax, x = xyx and y = yxy.

Proof. (2) \Rightarrow (1) is trivial.

(1) \Rightarrow (2) Since $a \approx b$ via I, there are $x,y,z \in I$ such that b = xay,zbx = a and x = xyx = xzx. By replacing y with yxy and z with zxz, we can assume y = yxy and z = zxz. One directly checks that xazxy = xzbxzxy = xzbxy = xay = b, zxybx = zxyxayx = zxayx = zbx = a, zxy = zxyxzxy and x = xzxyx. Since x = xyx = xzx and $x \in I$. Clearly, $y, z \in I$. Therefore $zxy \in I$, as required.

THEOREM 10. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) Whenever $a \overline{\sim} b$ via I, then there exists $u \in I_q^{-1}$ such that $a = ubu_q^{-1}$ and $b = u_q^{-1}au$.

Proof. (1) \Rightarrow (2) Suppose that $a \overline{\sim} b$ via I. By Lemma 9, there exist $x, y \in I$ such that a = xby, b = yax, x = xyx and y = yxy. Using

Theorem 2, we can find a $u \in I_q^{-1}$ such that y = yuy. Similarly to Theorem 2, we have $u_q^{-1} \in R$ such that $(1 - uu_q^{-1}) \perp (1 - u_q^{-1}u)$ and $u = uu_q^{-1}u$. Set $w = y + (1 - yu)u_q^{-1}(1 - uy)$. Then $uwu = u(y + (1 - yu)u_q^{-1}(1 - uy))$. $(yu)u_q^{-1}(1-uy)u = uyu + (1-uy)uu_q^{-1}u(1-yu) = uyu + u(1-yu) = u.$ In addition, we have $yuw = yu(y + (1 - yu)u_q^{-1}(1 - uy)) = yuy = y$ and $w \in 1 + I$. Clearly, $1 - uw = (1 - uy)(1 - uu_q^{-1})$ and $1 - wu = (1 - uy)(1 - uu_q^{-1})$ $u_q^{-1}u(1-yu)$. Hence (1-uw)R(1-wu)=0 and (1-wu)R(1-uw)=0. Let k = (1 - xy - uy)u(1 - yx - yu) and l = (1 - yx - yu)w(1 - xy - uy). Then klk = (1-xy-uy)u(1-yx-yu)(1-yx-yu)w(1-xy-uy)(1-xy-yu)w(1-xyuy)u(1-yx-yu)=(1-xy-uy)uwu(1-yx-yu)=k. Furthermore, we deduce that 1 - kl = (1 - xy - uy)(1 - uw)(1 - xy - uy) and k = uy(1-yx-yu)(1-wu)(1-xy-uy). Since (1-uw)R(1-wu)=0 and $1 - xy - uy, 1 - yx - yu \in U(R)$, we have (1 - kl)R(1 - lk) = 0 and (1-lk)R(1-kl) = 0. In addition, kbl = (1-xy-uy)u(1-yx-yu)b(1-yy)u(1-(yx - yu)w(1 - xy - uy) = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = xyuby = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uy)(u - uyx - uyu)by = (1 - xy - uyu)(u - uyx - uyu)by = (1 - xy - uyxby = a. By a similar rout, we have lak = b. One easily checks that $l, k \in 1 + I$. So we have $u \in I_q^{-1}$ such that $a = ubu_q^{-1}$ and $b = u_q^{-1}au$.

(2) \Rightarrow (1) Given any regular $x \in I$, there exists $y \in R$ such that x = xyx and y = yxy. Since xy and yx are both idempotents, we have $R = yxR \oplus (1-yx)R = xyR \oplus (1-xy)R$. Clearly, we have an isomorphism $\eta: xyR = xR \cong yxR$ given by $\eta(xr) = yxr$ for any $r \in R$. Similarly to Theorem 2, we see that $y \in I$. It is easy to verify that $xy \approx yx$ via I. Therefore we can find $u \in I_q^{-1}$ such that $yx = uxyu_q^{-1}$ and $xy = u_q^{-1}yxu$. Similarly to [6, Theorem 7], we construct maps $\alpha: (1-xy)R \to (1-yx)R$ given by $(1-xy)r \to (1-yx)u(1-xy)r$ for any $r \in R$ and $\beta: (1-yx)R \to (1-xy)R$ given by $(1-yx)r \to (1-xy)u_q^{-1}(1-yx)r$ for any $r \in R$. Define $\phi: R = xR \oplus (1-xy)R \to yxR \oplus (1-yx)R$ given by $\phi(x_1+x_2) = \eta(x_1) + \alpha(x_2)$ for any $x_1 \in xR, x_2 \in (1-xy)R$ and $\psi: R = yxR \oplus (1-yx)R \to xR \oplus (1-xy)R = R$ given by $\psi(y_1 + y_2) = \eta^{-1}(y_1) + \beta(y_2)$ for any $y_1 \in yxR, y_2 \in (1-yx)R$. Analogously [6, Theorem 7], we deduce that $(1-\psi\phi)\bot(1-\phi\psi)$; hence, $\phi \in R_q^{-1}$. Obviously, $x = x\phi x$. In addition, $\phi \in 1+I$. It follows by Theorem 2 that I is a qb-ideal.

COROLLARY 11. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a qb-ideal.
- (2) For any idempotents $e, f \in I$, $eR \cong fR$ implies that there exists $u \in I_a^{-1}$ such that $e = ufu_a^{-1}$ and $f = u_a^{-1}eu$.

Proof. (1) \Rightarrow (2) Suppose that $eR \cong fR$ via I. Then there exist $a,b \in R$ such that e=ab and f=ba, where $a \in eRf, b \in fRe$. Clearly, e=afb, f=bea, a=aba, b=bab and $a,b \in I$. That is, e = f via I. By Theorem 10, we have $u \in I_q^{-1}$ such that $e=ufu_q^{-1}$ and $f=u_q^{-1}eu$.

 $(2)\Rightarrow(1)$ is obtained by the proof of " $(2)\Rightarrow(1)$ " in Theorem 10. \square

[5, Lemma 3] shows that every exchange QB-ideal of a ring is a qb-ideal. It is well known that $M_n(I)$ is an exchange QB-ideal of $M_n(R)$ in case I is an exchange QB-ideal of R. We naturally end this paper by asking a question: If I is an exchange qb-ideal of a ring R, is $M_n(I)$ an exchange qb-ideal of $M_n(R)$?

References

- [1] P. Ara, Extensions of Exchange Rings, J. Algebra 197 (1997), 409-423.
- [2] P. Ara, K. R. Goodearl, K. C. O'Meara, and R. Raphael, K₁ of Separative Exchange Rings and C*-Algebras with Real Rank Zero, Pacific J. Math. 195 (2000), 261–275.
- [3] P. Ara, G. K. Pedersen, and F. Perera, An Infinite Analogue of Rings with Stable Range One, J. Algebra 230 (2000), 608-655.
- [4] _____, Extensions and Pullbacks in QB-Rings, Preprint, 2000.
- [5] H. Chen, On Exchange QB-Ideals, 2003.
- [6] _____, On Exchange QB-Rings, Comm. Algebra 31 (2003), 831-841.
- [7] _____, Related Comparability over Exchange Rings, Comm. Algebra 27 (1999), 4209-4216.
- [8] R. Guralnick and C. Lanski, Pseudosimilarity and Cancellation of Modules, Linear Algebra Appl. 47 (1982), 111-115.
- [9] R. E. Hartwig and J. Luh, A Note on the Group Structure of Unit Regular Ring Elements, Pacific J. Math. 71 (1977), 449-461.
- [10] P. Menal and J. Moncasi, Lifting Units in Self-injective Rings and An Index Theory for Rickart C*-Algebras, Pacific J. Math. 126 (1987), 295–329.
- [11] F. Perera, Lifting Units Modulo Exchange Ideals and C*-Algebras with Real Rank Zero, J. Reine. Math. 522 (2000), 51-62.
- [12] H. P. Yu, Stable Range One for Rings with Many Idempotents, Trans. Amer. Math. Soc. 347 (1995), 3141-3147.

Huanyin Chen, Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China

E-mail: chyzxl@sparc2.hunnu.edu.cn

MIAOSEN CHEN, DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY, JINHUA, ZHEJIANG 321004, P. R. CHINA *E-mail*: miaosen@mail.jhptt.zj.cn