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EXTENSIONS OF STRONGLY π-REGULAR RINGS
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Dedicated to Professor Abdullah Harmanci on his 70th birthday

Abstract. An ideal I of a ring R is strongly π-regular if for any x ∈ I

there exist n ∈ N and y ∈ I such that xn = xn+1y. We prove that
every strongly π-regular ideal of a ring is a B-ideal. An ideal I is periodic
provided that for any x ∈ I there exist two distinct m,n ∈ N such that
xm = xn. Furthermore, we prove that an ideal I of a ring R is periodic
if and only if I is strongly π-regular and for any u ∈ U(I), u−1

∈ Z[u].

1. Introduction

A ring R is strongly π-regular if for any x ∈ R there exist n ∈ N, y ∈ R
such that xn = xn+1y. For instance, all artinian rings and all algebraic algebra
over a filed. Such rings are extensively studied by many authors from very
different view points (cf. [1, 3, 4, 7, 9, 10, 11, 12, 13, 14]). We say that an
ideal I of a ring R is strongly π-regular provided that for any x ∈ I there exist
n ∈ N, y ∈ I such that xn = xn+1y. Many properties of strongly π-regular
rings were extended to strongly π-regular ideals in [5].

Recall that a ring R has stable range one provided that aR + bR = R with
a, b ∈ R implies that there exists y ∈ R such that a+ by ∈ R is invertible. The
stable range one condition is especially interesting because of Evans’ Theorem,
which states that a module cancels from direct sums whenever has stable range
one. For general theory of stable range conditions, we refer the reader to [5]. An
ideal I of a ring R is a B-ideal provided that aR+bR = R with a ∈ 1+I, b ∈ R
implies that there exists y ∈ R such that a + by ∈ R is invertible. An ideal I
is a ring R is stable provided that aR+ bR = R with a ∈ I, b ∈ R implies that
there exists y ∈ R such that a + by ∈ R is invertible. As is well known, every
B-ideal of a ring is stable, but the converse is not true.

In [1, Theorem 4], Ara proved that every strongly π-regular ring has stable
range one. This was extended to ideals, i.e., every strongly π-regular ideal of a
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ring is stable (cf. [6]). The main purpose of this note is to extend these results,
and show that every strongly π-regular ideal of a ring is a B-ideal. An ideal
I of a ring R is periodic provided that for any x ∈ I there exist two distinct
m,n ∈ N such that xm = xn. Furthermore, we show that an ideal I of a
ring R is periodic if and only if I is strongly π-regular and for any u ∈ U(I),
u−1 ∈ Z[u]. Several new properties of such ideals are also obtained.

Throughout, all rings are associative with an identity and all modules are
unitary modules. U(R) denotes the set of all invertible elements in the ring R
and U(I) =

(
1 + I

)⋂
U(R).

2. Strongly π-regular ideals

The aim of this section is to investigate more elementary properties of
strongly π-regular ideals and construct more related examples. For any x ∈ R,
we define σx : R → R given by σx(r) = xr for all r ∈ R.

Theorem 2.1. Let I be an ideal of a ring R. Then the following are equivalent:

(1) I is strongly π-regular.
(2) For any x ∈ I, there exists n ≥ 1 such that R = ker(σn

x )⊕ im(σn
x ).

Proof. (1) ⇒ (2) Let x ∈ I. In view of [5, Proposition 13.1.15], there exist
n ∈ N, y ∈ I such that xn = xn+1y and xy = yx. It is easy to check that
σn
x = σn+1

x σy . If a ∈ ker(σn
x )

⋂
im(σn

x ), then a = σn
x (r) and σn

x (a) = 0. This
implies that x2nr = σ2n

x (r) = 0, and so a = xnr = xn+1yr = yxn+1r =
ynx2nr = 0. Hence, ker(σn

x )
⋂
im(σn

x ) = 0. For any r ∈ R, we see that
r =

(
r − σn

x (y
nr)

)
+ σn

x (y
nr), and then R = ker(σn

x ) + im(σn
x ), as required.

(2) ⇒ (1) Write 1 = a+ b with a ∈ ker(σn
x ) and b ∈ im(σn

x ). For any x ∈ I.
σn
x (1) = σn

x (b), and so xn ∈ x2nR. Thus, I is strongly π-regular. �

Corollary 2.2. Let I be a strongly π-regular ideal of a ring R, and let x ∈ I.
Then the following are equivalent:

(1) σx is a monomorphism.

(2) σx is an epimorphism.

(3) σx is an isomorphism.

Proof. (1) ⇒ (2) In view of Theorem 2.1, there exists n ≥ 1 such that R =
ker(σn

x )⊕ im(σn
x ). Since σx is a monomorphism, so is σn

x . Hence, ker(σ
n
x ) = 0,

and then R = im(σn
x ). This implies that σx is an epimorphism.

(2) ⇒ (3) Since R = ker(σn
x ) ⊕ im(σn

x ), it follows from R = im(σn
x ) that

ker(σn
x ) = 0. Hence, σx is a monomorphism. Therefore σx is an isomorphism.

(3) ⇒ (1) is trivial. �

Proposition 2.3. Let I be an ideal of a ring R. Then the following are

equivalent:

(1) I is strongly π-regular.
(2) For any x ∈ I, RxR is strongly π-regular.
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Proof. (1) ⇒ (2) Let x ∈ I. For any a ∈ RxR, there exists an element b ∈ I
such that an = an+1b for some n ∈ N. Hence, an = an+1(ab2). As ab2 ∈ RxR,
we see that RxR is strongly π-regular.

(2) ⇒ (1) For any x ∈ I, RxR is strongly π-regular, and so there exists
y ∈ RxR such that xn = xn+1y. Clearly, y ∈ I, and therefore I is strongly
π-regular. �

The index of a nilpotent element in a ring is the least positive integer n such
that xn = 0. The index i(I) of an ideal I of a ring R is the supremum of the
indices of all nilpotent elements of I. An ideal I of a ring R is of bounded index
if i(I) < ∞. It is well known that i(I) ≤ n if and only if I contains no direct
sums of n+ 1 nonzero pairwise isomorphic right ideals (cf. [9, Theorem 7.2]).

Theorem 2.4. Let R be a ring, and let

I = {a ∈ R | i(RaR) < ∞}.

Then I is a strongly π-regular ideal of R.

Proof. Let x, y ∈ I and z ∈ R. Then RxzR,RzxR ⊆ RxR. This implies that
RxzR and RzxR are strongly π-regular of bounded index. Hence, xz, zx ∈ I.

Obviously, R(x − y)R ⊆ RxR + RyR. For any a ∈ R(x − y)R, a = c + d
where c ∈ RxR and d ∈ RyR. Since RxR is strongly π-regular, there exists
some n ∈ N such that cn = cn+1r for a r ∈ R. Let RyR is of bounded index
m. Then cn = cnm+1s for a s ∈ R. Hence, anm+1s − an ∈ RyR. As RyR is
strongly π-regular, we can find k ∈ N and d ∈ RyR such that

(
anm+1s− an

)k
=

(
anm+1s− an

)k+1
d,

d = d
(
anm+1s− an

)
d,

d
(
anm+1s− an

)
=

(
anm+1s− an

)
d.

Hence,
(
(anm+1s− an)− (anm+1s− an)2d

)k

=
(
anm+1s− an

)k(
1− (anm+1s− an)d

)k

=
(
anm+1s− an

)k(
1− (anm+1s− an)d

)

= 0.

Therefore
(
anm+1s−an

)m
=

(
anm+1s−an

)m+1
t. As a result, anm ∈ anm+1R.

Hence, we can find r ∈ R such that anm = anm+1(ar). Therefore I is a strongly
π-regular ideal of R. �

Corollary 2.5. Let R be a ring of bounded index. Then

I = {a ∈ R | RaR is strongly π-regular}

is the maximal strongly π-regular ideal of R.
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Proof. Since R is of bounded index, so is RaR for any a ∈ R. In view of
Theorem 2.4, I = {a ∈ R | RaR is strongly π-regular} is a strongly π-regular
ideal of R. Thus we complete the proof by Proposition 2.3. �

Example 2.6. Let V be an infinite-dimensional vector space over a field F ,
let R = EndF (V ), and let I = {σ ∈ R | dimF σ(V ) < ∞}. Then I is strongly
π-regular, while R is not strongly π-regular.

Proof. Clearly, I is an ideal of the ring R. We have the descending chain
σ(V ) ⊇ σ2(V ) ⊇ · · · . As dimF σ(V ) < ∞, we can find some n ∈ N such that
σn(V ) = σn+1(V ). Since V is a projective right F -module, we can find some
τ ∈ R such that the following diagram

V
τ ւ ↓ σn

V
σn+1

։ σn+1(V )

commutes, i.e., σn+1τ = σn. Hence, σn = σn+1(στ2). Therefore I is a strongly
π-regular ideal of R. Let ε be an element of R such that ε(xi) = xi+1 where
{x1, x2, . . .} is the basis of V . If R is strongly π-regular, there exists some
m ∈ N such that εmR = εm+1R, and so εm(V ) = εm+1(V ). As εm(xi) = xi+m

for all i, we see that εm(V ) =
∑

i>m xiF 6=
∑

i>m+1 xiF = εm+1(V ). This
gives a contradiction. Therefore R is not a strongly π-regular ring. �

Example 2.7. Let V be an infinite-dimensional vector space over a field F ,
let R = EndF (V ), and let S = (R R

0 R ). Then I = ( 0 R
0 0 ) is a strongly π-regular

ideal of R, while S is not a strongly π-regular ring.

Proof. By the discussion in Example 2.6, R is not strongly π-regular. Hence,
S is not strongly π-regular. As I2 = 0, one easily checks that I is a strongly
π-regular ideal of the ring S. �

An ideal I of a ring R is called a gsr-ideal if for any a ∈ I there exists some
integer n ≥ 2 such that aRa = anRan. For instance, every ideal of strongly
regular rings is a gsr-ideal.

Example 2.8. Every gsr-ideal of a ring is strongly π-regular.

Proof. Let I be a gsr-ideal of a ring R. Given x2 = 0 in I/
(
I
⋂
J(R)

)
, then

x2 ∈ I
⋂
J(R). As I is a gsr-ideal, we see that xRx = x2Rx2 ⊆ J(R), i.e.,

(RxR)2 ⊆ J(R). As J(R) is semiprime, it follows that RxR ⊆ J(R), and
so x ∈ J(R). That is, x = 0. This implies that I/

(
I
⋂
J(R)

)
is reduced.

For any idempotent e ∈ I/
(
I
⋂
J(R)

)
and any a ∈ R/J(R), it follows from

(
ea(1 − e)

)2
= 0 that ea(1 − e) = 0, thus ea = eae. Likewise, ae = eae. This

implies that ea = ae. As a result, every idempotent in I/
(
I
⋂
J(R)

)
is central.

For any x ∈ I
⋂
J(R), there exists some y ∈ R such that x2 = x2yx2, and then

x2(1 − yx2) = 0. This implies that x2 = 0. Conversely, we let x2 = 0. As I
is a gsr-ideal, we see that xRx = x2Rx2 = 0. That is, (RxR)2 ⊆ J(R), and
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so x ∈ J(R). Therefore I
⋂
J(R) = {x ∈ I | x2 = 0}. Let x ∈ I. Then there

exists some n ≥ 2 such that xRx = xnRxn. Hence, x2 = x2yx2. As x2y ∈ I is
an idempotent, we see that x2−x6y2 ∈ I

⋂
J(R). By the preceding discussion,

we get
(
x2 − x6y2

)2
= 0. This implies that x4 = x5r for some r ∈ I. Thus I is

strongly π-regular. �

3. Stable range condition

For any x, y ∈ R, write x ◦ y = x + y + xy. We use x[n] to stand for
x ◦ · · · ◦ x
︸ ︷︷ ︸

n

(n ≥ 1) and x[0] = 0. The following result was firstly observed in [8,

Lemma 1], we include a simple proof to make the paper self-contained.

Lemma 3.1. Let xi, yj ∈ R, and let pi, qj ∈ Z(1 ≤ i ≤ m, 1 ≤ j ≤ n).
If

∑

i pi =
∑

j qj = 1, then
(∑

i pixi

)
◦
(∑

j qjyj
)
=

∑

i,j(piqj)(xi ◦ yj). If
∑

i pi =
∑

j qj = 0, then
(∑

i pixi

)(∑

j qjyj
)
=

∑

i,j(piqj)(xi ◦ yj).

Proof. For any pi, qj ∈ Z, one easily checks that
∑

i,j

(piqj)(xi ◦ yj)

=
(∑

i

pixi

)(∑

j

qjyj
)
+
(∑

j

qj
)(∑

i

pixi

)
+
(∑

i

pi
)(∑

j

qjyj
)
.

Therefore the result follows. �

Lemma 3.2. Let I be a strongly π-regular ideal of a ring R. Then for any

x ∈ I, there exists some n ∈ N such that x[n] = x[n+1] ◦ y = z ◦ x[n+1] for

y, z ∈ I.

Proof. Let x ∈ I. Then −x−x2 ∈ I. Since I is a strongly π-regular ideal, there
exists some n ∈ N such that (−x − x2)n = (−x − x2)n+1s = s(−x − x2)n+1.
Clearly, x− x[2] = −x− x2. Thus,

(
x− x[2]

)n
=

(
x− x[2]

)n+1
s =

(
x− x[2]

)2n
t,

where t = sn. Since
∑n

i=0(−1)i ( ni ) = 0, it follows from Lemma 3.1 that

n∑

i=0

(−1)i
(
n
i

)
(
x[n−i] ◦ (x[2])[i]

)
=

(
x− x[2]

)n
.

Thus,

(
x− x[2]

)n
=

n∑

i=0

(−1)i
(
n
i

)

x[n+i]

= x[n] +

n∑

i=1

(−1)i
(
n
i

)

x[n+i].
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Let u =
∑n

i=1(−1)i+1 ( ni )x
[i]. Then u ◦x[n] = x[n] ◦u. Since

∑n

i=1(−1)i+1 ( ni )

= 1, by using Lemma 2.1 again,
(
x− x[2]

)n
= x[n] − x[n] ◦ u. Thus, we get

x[n] − x[n] ◦ u =
(
x[n] − x[n] ◦ u

)2
t

=
(
x[n] − x[n] ◦ u

)(
x[n] − x[n] ◦ u

)
(t− 0)

=
(
x[2n] − x[2n] ◦ u− x[2n] ◦ u+ x[2n] ◦ u[2]

)
(t− 0)

= x[2n] ◦
(
t− u ◦ t− u ◦ t+ u[2] ◦ t+ u+ u− u[2]

)
− x[2n]

= x[2n] ◦ (u2t)− x[2n].

Let v = x[2n] ◦ (u2t)− x[2n]. Then

x[n] = x[n] ◦ u+ v

=
(
x[n] ◦ u+ v − 0

)
◦ u+ v

= x[n] ◦ u[2] +
(
v ◦ u− u

)
+ v

...

= x[n] ◦ u[n+1] +

n∑

i=0

(
v ◦ u[i] − u[i]

)
.

Further,

v ◦ u[i] − u[i] =
(
x[2n] ◦ (u2t)− x[2n]

)
◦ u[i] − u[i]

=
(
x[2n] ◦ (u2t)− x[2n] + 0

)
◦ u[i] − u[i]

= x[2n] ◦ (u2t) ◦ u[i] − x[2n] ◦ u[i].

Hence

x[n] = x[n] ◦ u[n+1] +

n∑

i=0

(
x[2n] ◦ (u2t) ◦ u[i] − x[2n] ◦ u[i]

)
.

Further, we see that
n∑

i=0

(
x[2n] ◦ (u2t) ◦ u[i]− x[2n] ◦ u[i]

)
= x[2n] ◦

(
n∑

i=0

((u2t) ◦ u[i]− u[i])+ 0
)
− x[2n].

As
∑n

i=1(−1)i+1 ( ni ) = 1, we see that

u[n+1] =
(

n∑

i=1

(−1)i+1

(
n
i

)

x[i]
)[n+1]

=
∑

i1+···+in=n+1

Ci1···inx
[i1+2i2+···+nin]

=
∑

i1+···+in=n+1

Ci1···inx
[n] ◦ x[1+i2+···+(n−1)in].
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It is easy to check that
∑

i1+···+in=n+1 Ci1···in =
(∑n

i=1(−1)i+1 ( ni )
)n+1

= 1,

and so u[n+1] = x[n] ◦ v, where v =
∑

i1+···+in=n+1 Ci1···inx
[1+i2+···+(n−1)in].

Therefore

x[n] = x[2n] ◦ v + x[2n] ◦
(

n∑

i=0

((u2t) ◦ u[i] − u[i])
)
− x[2n]

= x[2n] ◦
(
v + (

n∑

i=0

((u2t) ◦ u[i] − u[i]))− 0
)

= x[2n] ◦
(
v +

n∑

i=0

((u2t) ◦ u[i] − u[i])
)
.

Let y = x[n−1] ◦
(
v +

∑n

i=0((u
2t) ◦ u[i] − u[i])

)
. Then x[n] = x[n+1] ◦ y with

y ∈ I. Likewise, x[n] = z ◦ x[n+1] for a z ∈ I, as required. �

Theorem 3.3. Every strongly π-regular ideal of a ring is a B-ideal.

Proof. Let I be a strongly π-regular ideal of a ring R. Let a ∈ 1 + I. Then
a− 1 ∈ I. In view of Lemma 2.2, we can find some n ∈ N, b, c ∈ 1+ I such that
(a− 1)[n] = (a− 1)[n+1] ◦ (b− 1) = (c− 1) ◦ (a− 1)[n+1]. One easily checks that
(a− 1)[n] = an− 1 and (a− 1)[n+1] = an+1− 1. Therefore an = an+1b = can+1,
and so an ∈ an+1R

⋂
Ran+1. According to [5, Proposition 13.1.2], a ∈ 1 + I is

strongly π-regular. According to [5, Theorem 13.1.7], I is a B-ideal. �

Corollary 3.4. Let I be a strongly π-regular ideal of a ring R, and let A be

a finitely generated projective right R-module. If A = AI, then for any right

R-modules B and C, A⊕B ∼= A⊕ C implies that B ∼= C.

Proof. For any x ∈ I, we have n ∈ N and y ∈ R such that xn = xn+1y and
xy = yx. Hence xn = xnzxn, where z = yn. Let g = zxn and e = g+(1−g)xng.
Then e ∈ Rx is an idempotent. In addition, we have 1−e = (1−g)

(
1−xng

)
=

(1 − g)
(
1 − xn

)
∈ Rx. Set f = 1 − e. Then there exists an idempotent f ∈ I

such that f ∈ Rx and 1 − f ∈ Rx. Therefore I is an exchange ideal of R. In
view of Theorem 3.3, I is a B-ideal. Therefore we complete the proof by [5,
Lemma 13.1.9]. �

Corollary 3.5. Let I be a strongly π-regular ideal of a ring R, and let a, b ∈
1 + I. If aR = bR, then a = bu for some u ∈ U(R).

Proof. Write ax = b and a = by. As a, b ∈ 1 + I, we see that x, y ∈ 1 + I.
In view of Theorem 3.3, I is a B-ideal. Since yx + (1 − yx) = 1, there exists
an element z ∈ R such that u := y + (1 − yx)z ∈ U(R). Therefore bu =
b
(
y + (1− yx)z

)
= by = a, as required. �

Corollary 3.6. Let I be a strongly π-regular ideal of a ring R, and let A ∈
Mn(I) be regular. Then A is the product of an idempotent matrix and an

invertible matrix.
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Proof. By virtue of Theorem 3.3, I is a B-ideal. As A ∈ Mn(I) is regular, we
have a B ∈ Mn(I) such that A = ABA. Since AB + (In − AB) = In, we get
(
A+(In−AB)

)
B+(In−AB)(In−B) = In where A+(In−AB) ∈ In+Mn(I).

Thus, we can find a Y ∈ Mn(R) such that U := A+(In−AB)+(In−AB)(In−
B)Y ∈ GLn(R). Therefore A = ABA = AB

(
A+ (In −AB) + (In −AB)(In −

B)Y
)
= ABU , as required. �

Let A is an algebra over a field F . An element a of an algebra A over a field
F is said to be algebraic over F if a is the root of some non-constant polynomial
in F [x]. An ideal I of A is said to be an algebraic ideal of A if every element
in I is algebraic over F .

Proposition 3.7. Let A is an algebra over a field F , and let I be an algebraic

ideal of A. Then I is a B-ideal.

Proof. For any a ∈ I, a is the root of some non-constant polynomial in F [x]. So
we can find am, . . . , an ∈ F such that ana

n+an−1a
n−1+ · · ·+amam = 0, where

am 6= 0. Hence, am = −(ana
n + · · · + am+1a

m+1)a−1
m = −am+1(ana

n−m−1 +
· · · + am+1)a

−1
m . Set b = −(ana

n−m−1 + · · · + am+1)a
−1
m . Then am = am+1b.

Therefore I is strongly π-regular, and so we complete the proof by Theorem
3.3. �

In the proof of Theorem 3.3, we show that for any a ∈ 1 + I, there exists
some n ∈ N such that an = an+1b for a b ∈ 1 + I if I is a strongly π-regular
ideal. A natural problem asks that if the converse of the preceding assertion
is true. The answer is negative from the following counterexample. Let p ∈ Z

be a prime and set Z(p) = {a/b | b 6∈ Zp (a/b in lowest terms)}. Then Z(p) is
a local ring with maximal pZ(p). Thus, the Jacobson radical pZ(p) satisfies the

condition above. Choose p/(p + 1) ∈ pZ(p). Then p/(p + 1) ∈ J
(
Z(p)

)
is not

nilpotent. This shows that pZ(p) is not strongly π-regular.

4. Periodic ideals

An ideal I of a ring R is periodic provided that for any x ∈ I there exist
distinct m,n ∈ N such that xm = xn. We note that an ideal I of a ring R is
periodic if and only if for any a ∈ I, there exists a potent element p ∈ I such
that a− p is nilpotent and ap = pa.

Lemma 4.1. Let I be an ideal of a ring R. If I is periodic, then for any

x ∈ 1 + I there exist m ∈ N, f(t) ∈ Z[t] such that xm = xm+1f(x).

Proof. For any a ∈ I, there exists some n ∈ N such that an = an+1
(
am−n−1

)

where m ≥ n+ 1. For any x ∈ 1 + I, we see that x− 1 ∈ I. As in the proof in
Lemma 3.2, we can find f(t) ∈ R[t] such that (x−1)[n] = (x−1)[n+1]◦(f(x)−1).
One easily checks that (x−1)[n] = xn−1 and (x−1)[n+1] = xn+1−1. Therefore
xn = xn+1f(x), as required. �
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Lemma 4.2. Let R be a ring, and let c ∈ R. If there exist a monic f(t) ∈ Z[t]
and some m ∈ N such that mc = 0 and f(c) = 0, then there exist s, t ∈ N(s 6= t)
such that cs = ct.

Proof. Clearly, Zc ⊆ {0, c, . . . , (m − 1)c}. Write f(t) = tk + b1t
k−1 + · · · +

bk−1t + bk ∈ Z[t]. Then ck+1 = −b1c
k − · · · − bk−1c

2 − bkc. This implies that
{c, c2, c3, . . . , cl, . . .} ⊆ {c, c2, c3, . . . , ck, 0, c, . . . , (m− 1)c, c2, . . . , (m− 1)c2, . . . ,
ck, . . . , (m− 1)ck}. That is, {c, c2, c3, . . . , ck, . . .} is a finite set. Hence, we can
find some s, t ∈ N, s 6= t such that cs = ct, as desired. �

As is well known, a ring R is periodic if and only if for any x ∈ R, there
exist n ∈ N and f(t) ∈ Z[t] such that xn = xn+1f(x). We extend this result to
periodic ideals.

Lemma 4.3. Let I be an ideal of a ring R. If for any x ∈ I, there exist n ∈ N

and f(t) ∈ Z[t] such that xn = xn+1f(x), then I is periodic.

Proof. Let x ∈ I. If x is nilpotent, then we can find some n ∈ N such that
xn = xn+1 = 0. Thus, we may assume that x ∈ I is not nilpotent. By
hypothesis, there exist n ∈ N and g(t) ∈ Z[t] such that xn = xn+1g(x). Thus,

xn = xn+1f(x), where f(x) = x
(
g(x)

)2
∈ Z[t]. In addition, f(0) = 0. Let

e = xn
(
f(x)

)n
. Then 0 6= e = e2 ∈ R and xn = xne. Set S = eRe and

α = ex = xe. Then f(α) = ef(x). Further,

αn
(
f(α)

)n
= e, αn = xn, αn = αn+1f(α).

Thus, e = αn
(
f(α)

)n
= αn+1

(
f(α)

)n+1
= αn

(
f(α)

)n
αf(α) = eαf(α) =

αf(α) in S. Write f(t) = a1t+ · · ·+ant
n. Then α

(
a1α+ · · ·+anα

n
)
= e. This

implies that (α−1)n+1−a1(α
−1)n−1−· · ·−ane = 0. Let g(t) = tn+1−a1t

n−1−
· · · − an ∈ Z[t]. Then g(t) is a monic polynomial such that g(α−1) = 0.

Let T = {me ∈ S | m ∈ Z}. Then T is a subring of S. For any me ∈ I,
by hypothesis, there exists g(t) ∈ Z[t] such that (me)p = (me)p+1g(me) ∈
(me)p+1T . This implies that T is strongly π-regular. Construct a map ϕ :
Z → T , m → me. Then Z/Kerϕ ∼= T . As Z is not strongly π-regular, we see
that Kerϕ 6= 0. Hence, T ∼= Zq for some q ∈ N. Thus, qe = 0. As a result,
qα−1 = 0. In view of Lemma 4.2, we can find some s, t ∈ N(s 6= t) such that
(α−1)s = (α−1)t. This implies that αs = αt. Hence, xns = xst, as asserted. �

Theorem 4.4. Let I be an ideal of a ring R. Then I is periodic if and only if

(1) I is strongly π-regular.
(2) For any u ∈ U(I), u−1 ∈ Z[u].

Proof. Suppose that I is periodic. Then I is strongly π-regular. For any
u ∈ U(I), it follows by Lemma 4.1 that there exist m ∈ N, f(t) ∈ Z[t] such that
um = um+1f(u). Hence, uf(u) = 1, and so u−1 ∈ Z[u].

Suppose that (1) and (2) hold. For any x ∈ I, there exist m ∈ N and
y ∈ I such that xm = xmyxm, y = yxmy and xy = yx from [5, Proposition
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13.1.15]. Set u = 1 − xmy + xm. Then u−1 = 1 − xmy + y. Hence, u ∈ U(I).
By hypothesis, there exists g(t) ∈ Z[t] such that ug(u) = 1. Further, xm =
xmy

(
1 − xmy + xm

)
= xmyu. Hence, xmu−1 = xmy, and so xm = xmyxm =

x2mg(u) = x2mxm
(
g(u)

)2
. Write

(
g(u)

)2
= b0 + b1u + · · · + bnu

n ∈ Z[u]. For

any i ≥ 0, it is easy to check that xmui = xm
(
1 − xmy + xm

)i
∈ Z[x]. This

implies that xm
(
g(u)

)2
∈ Z[x]. According to Lemma 4.3, I is periodic. �

It follows by Theorem 4.4 and Theorem 3.3 that every periodic ideal of a
ring is a B-ideal.

Corollary 4.5. Let I be a strongly π-regular ideal of a ring R. If U(I) is

torsion, then I is periodic.

Proof. For any u ∈ U(I), there exists some m ∈ N such that um = 1. Hence,
u−1 = um−1 ∈ Z[u]. According to Theorem 4.4, we complete the proof. �

Example 4.6. Let R =
(
Z Z

0 Z

)
and I = ( 0 Z

0 0 ). Then I is a nilpotent ideal of R;

hence, I is strongly π-regular. Clearly, ( 1 1
0 1 ) ∈ U(I), but ( 1 1

0 1 )
m

6= 0 for any
m ∈ N. Thus, U(I) is torsion.

The example above shows that the converse of Corollary 4.6 is not true. But
we can derive the following.

Proposition 4.7. Let I be an ideal of a ring R. If char(R) 6= 0, then I is

periodic if and only if

(1) I is strongly π-regular.
(2) U(I) is torsion.

Proof. Suppose that I is periodic. Then I is strongly π-regular. Let x ∈ U(I).
Then x is not nilpotent. By virtue of Lemma 4.1, there exist m ∈ N, f(t) ∈ Z[t]
such that xm = xm+1f(x). As in the proof of Lemma 4.3, we have a monic
polynomial g(t) ∈ Z[t] such that g(α−1) = 0. As char(R) 6= 0, we assume
that char(R) = q 6= 0. Then qα−1 = 0. According to Lemma 4.2, we can
find two distinct s, t ∈ N such that (α−1)s = (α−1)t. Similarly to Lemma 4.3,
xns = xst, and so x is torsion. Therefore U(I) is torsion. The converse is true
by Corollary 4.5. �
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