• Title/Summary/Keyword: Axis of Rotation

Search Result 627, Processing Time 0.037 seconds

Evaluation of Postural Control by Off-vertical Axis Rotation (탈수직축 회전자극을 이용한 자세조절기능의 평가)

  • 김규겸;이태호;김주환;고종선;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.111-114
    • /
    • 1999
  • Off-vertical axis rotator was developed to differentiate each function of the canal and otolith in the vestibular system and evaluate subjective symptoms during postural change. Eye movement induced by various types of rotation was measured in normal subjects. Nystagmus with fast component corresponding to direction of rotation was occurred by sinusoidal earth vertical axis rotation, and the gain of eye movement in vestibuloocular reflex (VOR) was lower than in visual vestibuloocular reflex (VVOR) and higher than in visual fixed vestibuloocular reflex (VFX). Degree of dizziness was proportioned to degree of gain. off-vertical axis rotation was produced severe dizziness than earth vertical axis rotation. These results suggest stimulation of the otolith should be minimized to make a stable and pleasant condition in work and travel.

  • PDF

Method of Beam Alignment with the Rotation Axis for Laser Fabrication of Micro Cylindrical Structures (레이저를 이용한 미세 원통 구조물 제조를 위한 빔과 회전축 정렬 방법)

  • 정성진;정성호;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1056-1060
    • /
    • 1997
  • An optical technique to align the laser beam with the rotation axis of a cylindrical microstructure is developed for laser microfabrication. The sample surface is first set normal to the rotation axis by applying a simple reflection law of geometrical optics and then the laser beam is aligned with the rotation axis using translation stages with quadrant photodiodes. Principle and the configuration of the alignment technique are described. An application of the present technique to laser microstereolithography showed that it could be effectively used for fabrication of micro cylindrical structures.

  • PDF

Analysis of Cantilevered Structure Rotating on an Eccentric Axis (외팔보형 구조물의 편심축 회전운동 해석)

  • 조지현;윤신일;한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.115-120
    • /
    • 2001
  • A gyroscope is a rotating body possessing one axis of symmetry and whose rotation about the symmetry axis is relatively large compared with the rotation about any other axis. Tuning fork is this type of structure that various modem gyro-sensors are based on. In this paper, dynamic behavior of a cantilevered beam subjected ta a base rotation with respect to the eccentric axis that is parallel to the beam axis is analyzed. The final equations of motion in terms of generalized coordinates can be solved with numerical scheme with various values of angular velocities and angular accelerations of the rotating axis. In contrast to the case of rotating cantilever beam like helicopter blade, the rotational motion with respect to the beam axis has effect to decrease the stiffness of the beam and has unstable region depending on the magnitude of the rotational angular velocity and angular acceleration.

  • PDF

A Study on Active SAR Satellite Maneuver Time Reduction through Sequential Rotation (연속회전을 통한 능동 합성개구레이더위성 기동시간 단축 연구)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.648-656
    • /
    • 2015
  • Active SAR satellite's main maneuver is roll axis maneuver to change SAR antenna direction. In addition, yaw steering is required to minimize the doppler centroid variation. Thus, it is resonable to assign the torque/momentum capacity mostly to roll axis and then yaw axis. In this case, the pitch axis shows low agility performance. However, due to orbit maintenance, large angle maneuver about pitch axis is sometimes required. In this paper, we study the pitch axis maneuver time reduction through sequential rotation about roll and yaw axis. Since these two axes have high agility performance than pitch axis, maneuver time reduction is possible when large angle rotation about pitch axis is required.

Comparisons Among Functional Methods of Axis of Rotation Suitable for Describing Human Joint Motion (인체 관절운동 기술에 적합한 회전축 추정방법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.449-458
    • /
    • 2011
  • There are many functional methods for estimating the mean axis of rotation of a joint. However, it is still a controversial issue which method is superior. The purpose of this study was to compare functional methods for estimated axes of rotation from synthetic data. The comparison was made in terms of suitabilities on describing humans in sports. For a more practical situation, the axis error as well as measurement and marker movement error were applied to generated data. Simulations having 1000 times of 80 rotational displacements were performed. The functional methods used in the study were two transformation methods, two fitting methods, and one more transformation method called M. The M method is a combination of S$\ddot{o}$derk & Wedin(1993) and Mardia & Jupp(2000). Another factor of the study was angular velocity with levels of .01, .025, .05, .5 and 1 rad/s. The method M resulted in unbiased, stable, and consistent axis of rotation vectors in all levels of angular velocity except .01 rad/s. Therefore, the method M had the highest validity and reliability of all the methods. The fitting methods were very sensitive in small angular velocities and stable only in the velocities of more than .5 rad/s. The most suitable method for analyzing human motion by using marker photogrammetry is M.

Torque shaping for near-minimum-time optimal slewing of 3-axis spacecraft (3축 위성체의 준최소시간 선회기동을 위한 입력형상최적화)

  • 김기석;김희섭;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1330-1333
    • /
    • 1997
  • In this paper, the optimal torque shaping is obtained for 3-axis rotation of a spacecraft. The true optimal 3-axis rotation of rigid spaeraft is first investigated via parameter optimization method with prescribed switching times. Input torque shape of the troque generating device mounted on the central hub is optimized using fourier Series expansion so that the spacecraft may slew while minimizing the vibration energy of flexible modes. Numerical results show that proposed method suggests a reference trahectory for open-loop control, and also verify that it can minimize the vibratory modes of the spacecraft during/after the rest-to-rest maneuver.

  • PDF

A Visual Detecting System for The Rotation Axis of Golf Ball (영상 기반 회전 골프공 무게중심 검출 시스템)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.411-416
    • /
    • 2019
  • In this paper, we describe a measurement system based on vision for detecting the rotation axis of dimpled golf ball. Some golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

A development of automatic detecting equipment for rotation axis of golf ball (골프공 회전 무게중심 검출 시스템)

  • Lee, Jae-woong;Hyun, Woong-keun;Oh, Jun-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.540-545
    • /
    • 2016
  • Many golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

  • PDF

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

Comparative Study on Axes of Rotation Data by Within-Subjects Designs (피험자내 설계에 의한 회전축자료의 비교연구)

  • Kim, Jinuk
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.873-887
    • /
    • 2013
  • The axis of rotation in biomechanics is a major tool to investigate joint function; therefore, many methods to estimate the axis of rotation have been developed. However, there exist several problems to describe, estimate, and test the axis statistically. The axis is directional data(axial data) and it should not be analyzed with traditional statistics. A proper comparative method should be considered to compare axis estimating methods for the same given data ANOVA (analysis of variance) is a frequently used statistical method to compare treatment means in experimental designs. In case of the axial data response assumed to come from Watson distribution, there are a few ANOVA method options. This study constructed ANOVA models for within-subjects designs of axial data. Two models (one within-subjects factor and two within-subjects factors crossed design) were considered. The empirical data used in this study were instantaneous axes of rotation of flexion/extension at the knee joint and the flexion/extension and pronation/supination at the elbow joint. The results of this study can be further applied to the various analysis of experimental designs.