• Title/Summary/Keyword: Axial Piston Pump

Search Result 85, Processing Time 0.038 seconds

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

Relation between Pressure Variations and Noise in Axial Type Oil Piston Pumps

  • Kim, Jong-Ki;Kim, Hyoung-Eui;Jung, Jae-Youn;Oh, Seok-Hyung;Jung, Seok-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1019-1025
    • /
    • 2004
  • Pressure variation is one of the major sources on noise emission in the axial type oil piston pumps. Therefore, it is necessary that the pressure variation characteristics of the oil hydraulic piston pumps be clarified to reduce the pump noise. Pressure variations in a cylinder at the discharge region and the pump noise were simultaneously measured with discharge pressures and rotational speeds during the pump working. To investigate the effects of the pre-compression and the V-notch in the valve plate, we used the three types of valve plates. In this research, it is clear that the pressure variation characteristics of axial type oil piston pumps is deeply related to the pre-compression and to the V-notch design in valve plate. Therefore, we could reduce the pump noise by using the appropriate pre-compression angle and the notch design that are between the suction port and the discharge port in valve plate.

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions (유압전동장치의 유량 압력맥동 특성)

  • 김도태;윤인균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

A Study on Identification of Open Area of Pump for Hydraulic Excavator (유압 굴삭기용 펌프의 개구면적 규명에 관한 연구)

  • Lim T.H.;Oh B.S.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.101-102
    • /
    • 2006
  • The purpose of this paper is pulsation-analysis of the swash plate type axial piston pump for excavator and the method of side branch hose application, which is used normally in construction equipments. In this paper, draw the mathematical modeling for pressure pulsation mechanism of the swash plate type axial piston pump for excavator, expression the flow pulsation in the pipelines by transfer matrix method, programmed simulation for pulsation by AMEsim software, and the reliability of that was verified by the comparison with the experimental results.

  • PDF

Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line (사판식 피스톤 펌프-관로계에서의 맥동류 해석)

  • Choi, Young-Hak;Lee, Ill-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (2) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(2))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part II, which consists of a structural interpretation of the internal flow path of the discharge plenum of the valve block. The simple model result reviewed in Part I was incorporated into the valve block model and five different design changes were reviewed as part of the study on the structural improvement of the internal flow path of the valve block.

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (1) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(1))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part I, which consists of a structural analysis of the valve block, identification of the stress distribution and stress raisers, and creation of a Simple Model of the valve block to review the optimal design. Structural analysis was performed by assigning the same conditions as those found in the valve block model, and the design was reviewed by examining three different design improvement plans for the internal flow path of the discharge plenum.