• Title/Summary/Keyword: Avionics Equipment

Search Result 71, Processing Time 0.024 seconds

A Study on the Analysis and Improvement of STANAG 4586 / MAVLink Protocol for Interoperability Improvement of UAS (UAS 상호운용성 향상을 위한 STANAG 4586과 MAVLink 프로토콜 비교분석 및 개선방안 연구)

  • Nam, Gyeongrae;Go, Jeonghwan;Kwon, Cheolhee;Jeong, Soyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.618-638
    • /
    • 2020
  • An unmanned aerial vehicle(UAV) refers to an aircraft that has all or part of its functions to autonomously fly by grasping the surrounding environment by remote control on the ground without a pilot on board. With the development of unmanned aerial technology, civil/military forces are developing unmanned aerial vehicles for various purposes. In order to control unmanned aerial vehicles from the ground, communication protocols between unmanned aerial vehicles and ground control equipment are required, and civil/military forces have developed and used a photocall for different purposes. In this study, the characteristics of the MAVLink protocol used in the private sector and the STANAG 4586 protocol used in the military are compared/analyzed in detail to find elements to complement each other and to draw improvement measures for protocol unification.

The Propose of Requirements Based on Safety Assessment for UAV Handover

  • Seung, Young-Min;An, Kyeong-Soo;Kim, Woo-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.91-97
    • /
    • 2019
  • Recently, UAV manufacturers are developing UAV system in a form that can be controlled by CS regardless of UAV kind and using STANAG 4586 interface standard considering Interoperability. STANAG 4586 is a NATO military standard developed to control various UAVs with standardized equipment. In such a case, UAV handover will inevitably occur and it is one of the most important function for safe UAV flight in platform using STANAG 4586. In the future combat situation where collaboration between AV and UAV is anticipated, seamless handover of UAV is a part of continuous research. In this paper, we propose requirements for UAV handover based on ARP 4761 safety assessment and analyze feasibility of the requirements by comparing UAV handover process in STANAG 4586. As a result of the comparative analysis, the proposed handover requirements based on ARP 4761 includes all the handover procedures of STANAG 4586 and present additional considerations for SOP creation and CS development. Applying the proposed handover requirements in the UAV development process can reduce the probability of loss of UAV control over the handover process and it can be expected to help improve the safety of UAV.

Optimal Maintenance Cycle Plan of Aerial Weapon System Radar Considering Maintenance Cost (운영유지 비용을 고려한 항공무기체계 레이다의 최적정비주기 설정 방안)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2018
  • Purpose: The purpose of this study is to propose a method to calculate the optimal preventive maintenance cycle of radar used in the aviation weapon system of ROKAF. Methods: A hybrid model is used to estimate the optimal preventive maintenance cycle in a system that can perform condition based predictive maintenance (CBPM) through continuous diagnosis. The failure data of the radars operating in the military were used to calculate the reliability. Results: According to the research results, the reliability threshold of the radar began to decrease after 5 flights, and decreased rapidly after 12 flights. Since the second check, costs have continued to decline. Conclusion: A method is proposed to determine the cycle of optimal preventive maintenance of radar within operational budget through modeling results between reliability limit and cost for radar. The results can be used to determine the optimal preventive maintenance cycle and frequency of various avionics equipment.

Filter design for protecting signal interference between RF equipments on aircraft (항공기 RF 장비들의 신호 간섭 방지를 위한 필터 설계)

  • Kim, Junhyoung;Kim, Bong-Gyu;Jeon, Young-Gu;Lee, Seong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.246-252
    • /
    • 2013
  • This paper presents method to suppress signal interference by using the filter in the RF output stage of the radiation equipment as a way to avoid interference between the RF(Radio Frequency) equipment mounted on aircraft. Especially filter design to suppress harmonics of the radiation equipment and testing method to verify the filter's performance is presented. Filter was installed at RF output stage of U/VHF radio in order to prevent interference between U/VHF(Ultra/Very High Frequency) radio and data link system. Filter design and testing method in this paper will be able to give help in the design of aircraft equipments as a tool that can be used to establish measures for problem of interference in the aircraft.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Verification of Hierarchically Structured Avionics System Utilizing Multi-Mode System Integration Laboratory (다중모드 통합시험환경을 이용한 계층구조 항공전자시스템의 검증)

  • Chang, Woohyuk;Park, Jae Seong;Jo, Young Wo;Byun, Jinku
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.998-1005
    • /
    • 2017
  • In this paper, we first introduce a systematic verification procedure for hierarchically structured avionics system. By making use of equipment models, it can perform individual verifications of each subsystem, integrated verifications of multiple subsystems, and an integrated verification of a whole system. A multi-mode system integration laboratory is then proposed to make it possible to execute various individual or integrated verification tests at the same time. By mathematically proving that the proposed multi-mode system integration laboratory needs less verification time than the conventional verification methodology, it is expected to enhance the efficiency of the systematic verification procedure and as a result, reduce the overall verification period and costs.

A Case Study on Safety Analysis Procedure of Aircraft System using the Relex (Relex를 이용한 항공기 시스템 안전성 평가 절차 사례분석)

  • Lee, Dong-Woo;Kim, Ip-Su;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.179-188
    • /
    • 2018
  • In developing avionics systems, safety analysis and evaluation specified in SAE ARP4761 (Methods and Guidelines for Civil Aviation System and Equipment Safety Assessment Process) are carried out to prevent air accidents. Safety analysis requires knowledge of the abnormal state of the system, not its normal state, and its interrelationships with other standards. Therefore, a tool that automatically outputs data which proves compliance with safety certification standards is required. In this study,In this study, Schematized the safety analysis procedure of the specification and studied the method of applying the safety analysis CAD tools to individual procedure. As an example study, ARP4761 analysis was performed on the wheel brake system (WBS) of the ARP4761 appendix.

Development of a Data Bus Analyzer for Avionics Interfaces of Various Types (다종 항공전자 인터페이스를 위한 데이터 버스 분석 장비 개발)

  • Kim, Min-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.825-832
    • /
    • 2016
  • This paper describes the development of a data bus analyzer for use in avionics systems integration test. The data bus analyzer is equipped with MIL-STD-1553B, CAN and Ethernet interface cards which is incorporated in a majority of the avionics systems to accommodate a variety of interfaces. It has an individual hardware for a capture engine and a analyzing engine in order to perform the collection and the analysis of the bus data at the same time efficiently. It provides a data display function of the grid, 2-dimensional and 3-dimensional form to increase the data analysis efficiency. Verification of the data bus analyzer was carried out module unit testing and inter-module integration testing on the basis of the test procedures. Verification of interlocking requirement and usefulness of developed equipment was confirmed through an integration test result performed on a system integration laboratory of aircraft which is an actual testing environment.

A design of FACE-compliant IOS and TS segments architecture based on ARINC653 in avionics system (항공전자 시스템에서 ARINC653 기반의 FACE를 준수하는 IOS 및 TS 세그먼트 구조 설계 )

  • Doo-Hwan Lee;Young-Uk Nam;Kyeong-Yeon Cho;Ji-Yong Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2023
  • The increasing complexity of avionics systems has emphasized the portability and reusability of software components. In this paper, a structural design method for IOSS (Input Output Service Segment) and TSS (Transport Service Segment) complying with the FACE (The Future Airborne Capability Environment) standard in the VxWorks 653 operating environment that satisfies ARINC 653 requirements is described. IOSS and TSS operate independently in different partitions to minimize time/space separation and the influence of other software, and to increase portability and reusability, strategy patterns among design patterns are applied. In addition, IOSS provides external interface service by applying distributed IO service structure, and among external interfaces, the ARINC 664 P7 interface of FACE-compliant equipment is placed in TSS to optimize the data movement path.

The Development of the Medical Information's Transmission System Using the Bluetooth (블루투스 통신을 이용한 의료정보 전송 시스템의 개발)

  • Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.787-792
    • /
    • 2009
  • A number of very promising applications such as health monitoring and U-Health of ubiquitous techniques has attracted interest in recent years. Because it can observes the condition of patient from long distance using the equipment which combines with radio communication and medical monitoring system. If it is at emergency situation, it can disposes the condition of the patient. In this paper, we propose the new data format and the transmission communication system of combination medical information with the bluetooth. And we produce the on-board system which transmits the medical information. This system integrated the blood pressure and glucose monitor of personal medical equipment, and the medical information which obtained from on-board system acquires through the gateway with the bluetooth. Medical information is transmitted to the tele-monitor server by the wireline network. We evaluated the proposed system under the laboratory environment and confirmed the excellent performance of transmission of the medical information.

  • PDF