• 제목/요약/키워드: Automatic Speaker Recognition

Search Result 41, Processing Time 0.022 seconds

Forensic Automatic Speaker Identification System for Korean Speakers (과학수사를 위한 한국인 음성 특화 자동화자식별시스템)

  • Kim, Kyung-Wha;So, Byung-Min;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.95-101
    • /
    • 2012
  • In this paper, we introduce the automatic speaker identification system 'SPO(Supreme Prosecutors Office) Verifier'. SPO Verifier is a GMM(Gaussian mixture model)-UBM(universal background model) based automatic speaker recognition system and has been developed using Korean speakers' utterances. This system uses a channel compensation algorithm to compensate recording device characteristics. The system can give the users the ability to manage reference models with utterances from various environments to get more accurate recognition results. To evaluate the performance of SPO Verifier on Korean speakers, we compared this system with one of the most widely used commercial systems in the forensic field. The results showed that SPO Verifier shows lower EER(equal error rate) than that of the commercial system.

Automatic Log-in System by the Speaker Certification

  • Sohn, Young-Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.176-181
    • /
    • 2004
  • This paper introduces a Web site login system that uses user's native voice to improve the bother of remembering the ID and password in order to login the Web site. The DTW method that applies fuzzy inference is used as the speaker recognition algorithm. We get the ACC(Average Cepstrum Coefficient) membership function by each degree, by using the LPC that models the vocal chords, to block the recorded voice that is problem for the speaker recognition. We infer the existence of the recorded voice by setting on the basis of the number of zeros that is the value of the ACC membership function, and on the basis of the average value of the ACC membership function. We experiment the six Web sites for the six subjects and get the result that protects the recorded voice about 98% that is recorded by the digital recorder.

Cyber Threats Analysis of AI Voice Recognition-based Services with Automatic Speaker Verification (화자식별 기반의 AI 음성인식 서비스에 대한 사이버 위협 분석)

  • Hong, Chunho;Cho, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Automatic Speech Recognition(ASR) is a technology that analyzes human speech sound into speech signals and then automatically converts them into character strings that can be understandable by human. Speech recognition technology has evolved from the basic level of recognizing a single word to the advanced level of recognizing sentences consisting of multiple words. In real-time voice conversation, the high recognition rate improves the convenience of natural information delivery and expands the scope of voice-based applications. On the other hand, with the active application of speech recognition technology, concerns about related cyber attacks and threats are also increasing. According to the existing studies, researches on the technology development itself, such as the design of the Automatic Speaker Verification(ASV) technique and improvement of accuracy, are being actively conducted. However, there are not many analysis studies of attacks and threats in depth and variety. In this study, we propose a cyber attack model that bypasses voice authentication by simply manipulating voice frequency and voice speed for AI voice recognition service equipped with automated identification technology and analyze cyber threats by conducting extensive experiments on the automated identification system of commercial smartphones. Through this, we intend to inform the seriousness of the related cyber threats and raise interests in research on effective countermeasures.

An Improvement of Korean Speech Recognition Using a Compensation of the Speaking Rate by the Ratio of a Vowel length (모음길이 비율에 따른 발화속도 보상을 이용한 한국어 음성인식 성능향상)

  • 박준배;김태준;최성용;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.195-198
    • /
    • 2003
  • The accuracy of automatic speech recognition system depends on the presence of background noise and speaker variability such as sex, intonation of speech, and speaking rate. Specially, the speaking rate of both inter-speaker and intra-speaker is a serious cause of mis-recognition. In this paper, we propose the compensation method of the speaking rate by the ratio of each vowel's length in a phrase. First the number of feature vectors in a phrase is estimated by the information of speaking rate. Second, the estimated number of feature vectors is assigned to each syllable of the phrase according to the ratio of its vowel length. Finally, the process of feature vector extraction is operated by the number that assigned to each syllable in the phrase. As a result the accuracy of automatic speech recognition was improved using the proposed compensation method of the speaking rate.

  • PDF

Variation of the Verification Error Rate of Automatic Speaker Recognition System With Voice Conditions (다양한 음성을 이용한 자동화자식별 시스템 성능 확인에 관한 연구)

  • Hong Soo Ki
    • MALSORI
    • /
    • no.43
    • /
    • pp.45-55
    • /
    • 2002
  • High reliability of automatic speaker recognition regardless of voice conditions is necessary for forensic application. Audio recordings in real cases are not consistent in voice conditions, such as duration, time interval of recording, given text or conversational speech, transmission channel, etc. In this study the variation of verification error rate of ASR system with the voice conditions was investigated. As a result in order to decrease both false rejection rate and false acception rate, the various voices should be used for training and the duration of train voices should be longer than the test voices.

  • PDF

Speaker Separation Based on Directional Filter and Harmonic Filter (Directional Filter와 Harmonic Filter 기반 화자 분리)

  • Baek, Seung-Eun;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.125-136
    • /
    • 2005
  • Automatic speech recognition is much more difficult in real world. Speech recognition according to SIR (Signal to Interface Ratio) is difficult in situations in which noise of surrounding environment and multi-speaker exists. Therefore, study on main speaker's voice extractions a very important field in speech signal processing in binaural sound. In this paper, we used directional filter and harmonic filter among other existing methods to extract the main speaker's information in binaural sound. The main speaker's voice was extracted using directional filter, and other remaining speaker's information was removed using harmonic filter through main speaker's pitch detection. As a result, voice of the main speaker was enhanced.

  • PDF

Automatic Speech Style Recognition Through Sentence Sequencing for Speaker Recognition in Bilateral Dialogue Situations (양자 간 대화 상황에서의 화자인식을 위한 문장 시퀀싱 방법을 통한 자동 말투 인식)

  • Kang, Garam;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.17-32
    • /
    • 2021
  • Speaker recognition is generally divided into speaker identification and speaker verification. Speaker recognition plays an important function in the automatic voice system, and the importance of speaker recognition technology is becoming more prominent as the recent development of portable devices, voice technology, and audio content fields continue to expand. Previous speaker recognition studies have been conducted with the goal of automatically determining who the speaker is based on voice files and improving accuracy. Speech is an important sociolinguistic subject, and it contains very useful information that reveals the speaker's attitude, conversation intention, and personality, and this can be an important clue to speaker recognition. The final ending used in the speaker's speech determines the type of sentence or has functions and information such as the speaker's intention, psychological attitude, or relationship to the listener. The use of the terminating ending has various probabilities depending on the characteristics of the speaker, so the type and distribution of the terminating ending of a specific unidentified speaker will be helpful in recognizing the speaker. However, there have been few studies that considered speech in the existing text-based speaker recognition, and if speech information is added to the speech signal-based speaker recognition technique, the accuracy of speaker recognition can be further improved. Hence, the purpose of this paper is to propose a novel method using speech style expressed as a sentence-final ending to improve the accuracy of Korean speaker recognition. To this end, a method called sentence sequencing that generates vector values by using the type and frequency of the sentence-final ending appearing in the utterance of a specific person is proposed. To evaluate the performance of the proposed method, learning and performance evaluation were conducted with a actual drama script. The method proposed in this study can be used as a means to improve the performance of Korean speech recognition service.

Vowel Fundamental Frequency in Manner Differentiation of Korean Stops and Affricates

  • Jang, Tae-Yeoub
    • Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.217-232
    • /
    • 2000
  • In this study, I investigate the role of post-consonantal fundamental frequency (F0) as a cue for automatic distinction of types of Korean stops and affricates. Rather than examining data obtained by restricting contexts to a minimum to prevent the interference of irrelevant factors, a relatively natural speaker independent speech corpus is analysed. Automatic and statistical approaches are adopted to annotate data, to minimise speaker variability, and to evaluate the results. In spite of possible loss of information during those automatic analyses, statistics obtained suggest that vowel F0 is a useful cue for distinguishing manners of articulation of Korean non-continuant obstruents having the same place of articulation, especially of lax and aspirated stops and affricates. On the basis of the statistics, automatic classification is attempted over the relevant consonants in a specific context where the micro-prosodic effects appear to be maximised. The results confirm the usefulness of this effect in application for Korean phone recognition.

  • PDF

AI-based language tutoring systems with end-to-end automatic speech recognition and proficiency evaluation

  • Byung Ok Kang;Hyung-Bae Jeon;Yun Kyung Lee
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.

An Implementation of the Real Time Speech Recognition for the Automatic Switching System (자동 교환 시스템을 위한 실시간 음성 인식 구현)

  • 박익현;이재성;김현아;함정표;유승균;강해익;박성현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.31-36
    • /
    • 2000
  • This paper describes the implementation and the evaluation of the speech recognition automatic exchange system. The system provides government or public offices, companies, educational institutions that are composed of large number of members and parts with exchange service using speech recognition technology. The recognizer of the system is a Speaker-Independent, Isolated-word, Flexible-Vocabulary recognizer based on SCHMM(Semi-Continuous Hidden Markov Model). For real-time implementation, DSP TMS320C32 made in Texas Instrument Inc. is used. The system operating terminal including the diagnosis of speech recognition DSP and the alternation of speech recognition candidates makes operation easy. In this experiment, 8 speakers pronounced words of 1,300 vocabulary related to automatic exchange system over wire telephone network and the recognition system achieved 91.5% of word accuracy.

  • PDF