• Title/Summary/Keyword: Automated Machine Learning

Search Result 175, Processing Time 0.029 seconds

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

Prediction of medication-related osteonecrosis of the jaw (MRONJ) using automated machine learning in patients with osteoporosis associated with dental extraction and implantation: a retrospective study

  • Da Woon Kwack;Sung Min Park
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.3
    • /
    • pp.135-141
    • /
    • 2023
  • Objectives: This study aimed to develop and validate machine learning (ML) models using H2O-AutoML, an automated ML program, for predicting medication-related osteonecrosis of the jaw (MRONJ) in patients with osteoporosis undergoing tooth extraction or implantation. Patients and Methods: We conducted a retrospective chart review of 340 patients who visited Dankook University Dental Hospital between January 2019 and June 2022 who met the following inclusion criteria: female, age ≥55 years, osteoporosis treated with antiresorptive therapy, and recent dental extraction or implantation. We considered medication administration and duration, demographics, and systemic factors (age and medical history). Local factors, such as surgical method, number of operated teeth, and operation area, were also included. Six algorithms were used to generate the MRONJ prediction model. Results: Gradient boosting demonstrated the best diagnostic accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.8283. Validation with the test dataset yielded a stable AUC of 0.7526. Variable importance analysis identified duration of medication as the most important variable, followed by age, number of teeth operated, and operation site. Conclusion: ML models can help predict MRONJ occurrence in patients with osteoporosis undergoing tooth extraction or implantation based on questionnaire data acquired at the first visit.

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

A Study on the Insider Behavior Analysis Framework for Detecting Information Leakage Using Network Traffic Collection and Restoration (네트워크 트래픽 수집 및 복원을 통한 내부자 행위 분석 프레임워크 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.125-139
    • /
    • 2017
  • In this paper, we developed a framework to detect and predict insider information leakage by collecting and restoring network traffic. For automated behavior analysis, many meta information and behavior information obtained using network traffic collection are used as machine learning features. By these features, we created and learned behavior model, network model and protocol-specific models. In addition, the ensemble model was developed by digitizing and summing the results of various models. We developed a function to present information leakage candidates and view meta information and behavior information from various perspectives using the visual analysis. This supports to rule-based threat detection and machine learning based threat detection. In the future, we plan to make an ensemble model that applies a regression model to the results of the models, and plan to develop a model with deep learning technology.

A Study on Artificial Intelligence-based Automated Integrated Security Control System Model (인공지능 기반의 자동화된 통합보안관제시스템 모델 연구)

  • Wonsik Nam;Han-Jin Cho
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.45-52
    • /
    • 2024
  • In today's growing threat environment, rapid and effective detection and response to security events is essential. To solve these problems, many companies and organizations respond to security threats by introducing security control systems. However, existing security control systems are experiencing difficulties due to the complexity and diverse characteristics of security events. In this study, we propose an automated integrated security control system model based on artificial intelligence. It is based on deep learning, an artificial intelligence technology, and provides effective detection and processing functions for various security events. To this end, the model applies various artificial intelligence algorithms and machine learning methods to overcome the limitations of existing security control systems. The proposed model reduces the operator's workload, ensures efficient operation, and supports rapid response to security threats.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

Automated Smudge Attacks Based on Machine Learning and Security Analysis of Pattern Lock Systems (기계 학습 기반의 자동화된 스머지 공격과 패턴 락 시스템 안전성 분석)

  • Jung, Sungmi;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.903-910
    • /
    • 2016
  • As smart mobile devices having touchscreens are growingly deployed, a pattern lock system, which is one of the graphical password systems, has become a major authentication mechanism. However, a user's unlocking behaviour leaves smudges on a touchscreen and they are vulnerable to the so-called smudge attacks. Smudges can help an adversary guess a secret pattern correctly. Several advanced pattern lock systems, such as TinyLock, have been developed to resist the smudge attacks. In this paper, we study an automated smudge attack that employs machine learning techniques and its effectiveness in comparison to the human-only smudge attacks. We also compare Android pattern lock and TinyLock schemes in terms of security. Our study shows that the automated smudge attacks are significantly advanced to the human-only attacks with regard to a success ratio, and though the TinyLock system is more secure than the Android pattern lock system.

External vs. Internal: An Essay on Machine Learning Agents for Autonomous Database Management Systems

  • Fatima Khalil Aljwari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.164-168
    • /
    • 2023
  • There are many possible ways to configure database management systems (DBMSs) have challenging to manage and set.The problem increased in large-scale deployments with thousands or millions of individual DBMS that each have their setting requirements. Recent research has explored using machine learning-based (ML) agents to overcome this problem's automated tuning of DBMSs. These agents extract performance metrics and behavioral information from the DBMS and then train models with this data to select tuning actions that they predict will have the most benefit. This paper discusses two engineering approaches for integrating ML agents in a DBMS. The first is to build an external tuning controller that treats the DBMS as a black box. The second is to incorporate the ML agents natively in the DBMS's architecture.