Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.2.243

Gaussian mixture model for automated tracking of modal parameters of long-span bridge  

Mao, Jian-Xiao (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University)
Wang, Hao (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University)
Spencer, Billie F. Jr. (Nathan M. and Anne M. Newmark Endowed Chair of Civil Engineering, University of Illinois at Urbana-Champaign)
Publication Information
Smart Structures and Systems / v.24, no.2, 2019 , pp. 243-256 More about this Journal
Abstract
Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.
Keywords
Gaussian Mixture Model (GMM); baseline modal properties; automated mode tracking; long-span bridge; structural health monitoring (SHM);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Demarie, G.V. and Sabia, D. (2018), "A machine learning approach for the automatic long-term structural health monitoring", Struct. Health Monit., 147592171877919. DOI:10.1177/1475921718779193.
2 Annamdas, V.G.M., Bhalla, S. and Soh, C.K. (2016), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16(3), 324-346. DOI:10.1177/1475921716653278.   DOI
3 Asadollahi, P. and Li, J. (2017), "Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring", J. Bridge Eng., 22(9), 04017051. DOI:10.1061/(ASCE)BE.1943-5592.0001093.   DOI
4 Bishop, C.M. (2006), Pattern recognition and machine learning. Singapore, Springer Science.
5 Brownjohn, J., Magalhaes, F., Caetano, E. and Cunha, A. (2010), "Ambient vibration re-testing and operational modal analysis of the Humber Bridge", Eng. Struct., 32(8), 2003-2018. DOI:10.1016/j.engstruct.2010.02.034.   DOI
6 Cabboi, A., Magalhaes, F., Gentile, C. and Cunha, A. (2017), "Automated modal identification and tracking: Application to an iron arch bridge", Struct. Control Health Monit., 24(1), e1854. DOI:10.1002/stc.1854.   DOI
7 Cao, Z. and Wang, Y. (2014), "Bayesian model comparison and selection of spatial correlation functions for soil parameters", Struct. Saf., 49, 10-17. DOI:10.1016/j.strusafe.2013.06.003.   DOI
8 Wang, H., Mao, J.X. and Spencer, Jr., B.F. (2019), "A monitoringbased approach for evaluating dynamic responses of riding vehicle on long-span bridge under strong winds", Eng. Struct., 189, 35-47. DOI:10.1016/j.engstruct.2019.03.075.   DOI
9 Wang, H., Tao, T., Gao, Y. and Xu, F. (2018), "Measurement of wind effects on a kilometer-level cable-stayed bridge during typhoon Haikui", J. Struct. Eng., 144(9), 04018142. DOI:10.1061/(ASCE)ST.1943-541X.0002138.   DOI
10 Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. DOI:10.12989/sss.2016.18.2.317.   DOI
11 Wasserman, L. (2000), "Bayesian model selection and model averaging", J. Math. Psychol., 44(1), 92-107. DOI:10.1006/jmps.1999.1278.   DOI
12 Wold, S., Esbensen, K. and Geladi, P. (1987), "Principal component analysis", Chemometrics and intelligent laboratory Systems, 2(1-3), 37-52.   DOI
13 Zhou, G.D., Yi, T.H., Xie, M.X. and Li, H.N. (2017), "Wireless sensor placement for structural monitoring using informationfusing firefly algorithm", Smart Mater. Struct., 26(10), 104002.   DOI
14 Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015), "Energyaware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control Health Monit., 22(4), 648-666. DOI:10.1002/stc.1707.   DOI
15 Ni, Y., Wang, Y. and Xia, Y. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., 15(2), 447-468. DOI:10.12989/sss.2015.15.2.447.   DOI
16 Mao, J.X., Wang, H., Fu, Y.G. and Spencer, Jr., B.F. (2019), "Automated modal identification using principal component and cluster analysis: Application to a long-span cable-stayed bridge", Struct. Control Health Monit., e2430. DOI:10.1002/stc.2430.   DOI
17 Mao, J.X., Wang, H. and Li, J. (2018b). "Fatigue reliability assessment of a long-span cable-stayed bridge based on oneyear monitoring strain data", J. Bridge Eng., 24(1), 05018015. DOI:10.1061/(ASCE)BE.1943-5592.0001337.   DOI
18 Moon, T.K. (1996), "The expectation-maximization algorithm", IEEE Signal Proc. Mag., 13(6), 47-60. DOI:10.1109/79.543975   DOI
19 Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dynamic Systems, Measurement, and Control, 123(4), 659. DOI:10.1115/1.1410370.   DOI
20 Ou, J.P. and Li, H. (2010), "Structural health monitoring in mainland China: review and future trends", Struct. Health Monit., 9(3), 219-231. DOI:10.1177/1475921710365269.   DOI
21 Reynders, E., Houbrechts, J. and De Roeck, G. (2012). "Fully automated (operational) modal analysis", Mech. Syst. Signal Pr., 29(2012), 228-250. DOI:10.1016/j.ymssp.2012.01.007.   DOI
22 Reynders, E., Wursten, G. and De Roeck, G. (2014), "Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification", Struct. Health Monit., 13(1), 82-93. DOI:10.1177/1475921713502836.   DOI
23 Reynolds, D.A., Quatieri, T.F. and Dunn, R.B. (2000), "Speaker verification using adapted Gaussian mixture models", Digital Signal Process., 10(1-3), 19-41. DOI:10.1006/dspr.1999.0361.   DOI
24 Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. DOI:10.1016/j.engstruct.2018.05.084.   DOI
25 Soyoz, S. and Feng, M.Q. (2009), "Long-term monitoring and identification of bridge structural parameters", Comput.-Aided Civil Infrastruct. Engi., 24(2), 82-92. DOI:10.1111/j.1467-8667.2008.00572.x.   DOI
26 Spencer, Jr., B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856.   DOI
27 Feng, M.Q. and Bahng, E.Y. (1999), "Damage assessment of jacketed RC columns using vibration tests", J. Struct. Eng., 125(3), 265-271. DOI:10.1061/(ASCE)0733-9445(1999)125:3(265).   DOI
28 Tamura, Y. and Suganuma, S.Y. (1996), "Evaluation of amplitudedependent damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59(2-3), 115-130. DOI:10.1016/0167-6105(96)00003-7.   DOI
29 Verboven, P., Parloo, E., Guillaume, P. and Van Overmeire, M. (2002), "Autonomous structural health monitoring-part I: modal parameter estimation and tracking", Mech. Syst. Signal Pr., 16(4), 637-657. DOI:10.1006/mssp.2002.1492.   DOI
30 El-Kafafy, M., Devriendt, C., Guillaume, P. and Helsen, J. (2017),. "Automatic tracking of the modal parameters of an offshore wind turbine drivetrain system", Energies, 10(4), 574. DOI:10.3390/en10040574.   DOI
31 Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A kmeans clustering algorithm", J. Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. DOI:10.2307/2346830
32 Hu, W.H. (2011), Operational modal analysis and continuous dynamic monitoring of footbridges. (Ph. D.), University of Porto, Porto.
33 Huang, Y., Englehart, K.B., Hudgins, B. and Chan, A.D. (2005), "A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses", IEEE T. Bio-Med. Eng., 52(11), 1801-1811. DOI:10.1109/TBME.2005.856295.   DOI
34 Jeffreys, H. (1998), The theory of probability. Oxford: Oxford University Press.
35 Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R. and Wu, A.Y. (2002), "An efficient k-means clustering algorithm: Analysis and implementation", IEEE T. Pattern Anal. Machine Intell., (7), 881-892. DOI:10.1109/TPAMI.2002.1017616.
36 Cardoso, R., Cury, A. and Barbosa, F. (2017), "A robust methodology for modal parameters estimation applied to SHM", Mech. Syst. Signal Pr., 95, 24-41. DOI:10.1016/j.ymssp.2017.03.021.   DOI
37 Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. DOI:10.1016/j.engstruct.2005.02.021.   DOI
38 Mao, J.X., Wang, H., Feng, D.M., Tao, T.Y. and Zheng, W.Z. (2018a), "Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition", Struct. Control Health Monit., 25(5), e2146. DOI:10.1002/stc.2146.   DOI