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Use of automated artificial intelligence to predict 
the need for orthodontic extractions

Objective: To develop and explore the usefulness of an artificial intelligence 
system for the prediction of the need for dental extractions during orthodontic 
treatments based on gender, model variables, and cephalometric records. 
Methods: The gender, model variables, and radiographic records of 214 patients 
were obtained from an anonymized data bank containing 314 cases treated by 
two experienced orthodontists. The data were processed using an automated 
machine learning software (Auto-WEKA) and used to predict the need for 
extractions. Results: By generating and comparing several prediction models, an 
accuracy of 93.9% was achieved for determining whether extraction is required 
or not based on the model and radiographic data. When only model variables 
were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was 
achieved if only cephalometric information was used. Conclusions: The use of 
an automated machine learning system allows the generation of orthodontic 
extraction prediction models. The accuracy of the optimal extraction prediction 
models increases with the combination of model and cephalometric data for the 
analytical process. 
[Korean J Orthod 2022;52(2):102-111]
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INTRODUCTION

Malocclusion is a dentofacial anomaly that affects 
occlusal function, esthetics, and quality of life,1 and 
orthodontics is the discipline that encompasses the 
evaluation, prevention, and treatment of malocclusions. 
Several methods for identifying the possible causes of 
malocclusions and treatment approaches have been 
developed. In recent years, computational approaches, 
using software systems, have been used in medicine and 
dentistry to facilitate more efficient diagnostic strate-
gies and better therapeutic results guided by prognostic 
predictions.2 Computational approaches have also been 
used to quantify the subjective impressions of the expert 
professional, incorporating the expert’s clinical perspec-
tive into the systems and making that available to the 
less experienced doctors.3,4 Among these computational 
techniques, the ones that have received special attention 
are those from the field of Artificial Intelligence (AI), 
specifically, machine learning (ML), whereby a computer 
is trained to generate a customized model based on a 
given dataset, which is used for predictions.2 Widely used 
examples of complex ML algorithms are neural networks 
and deep neural networks.

As with several advanced computational techniques, 
applying ML effectively is an intellectually and techni-
cally challenging enterprise. ML requires an expert to 
organize, analyze, and optimize the data and the models 
and prevent overfitting.5 Overfitting is a phenomenon 
by which excessive iterative learning can increase the 
goodness-of-fit of the model for the training dataset,4 
with a decrease in the accuracy of the model when ap-
plied to the test set or an external database. It is classi-
cally handled by splitting the sample into training and 
test parts, cross-validation, or more complex but more 
reliable methods as nested cross-validation, consisting of 
an inner circle of cross-validation nested within an outer 
circle of cross-validation. The inner circle is equivalent 
to the validation set and is used for model selection and 
optimization, while the outer circle is equivalent to the 
test set and is used for error estimation. Using nested 
cross-validation has been accepted as a viable approach 
to optimally unbiased performance evaluation on the 
training set while reducing overfitting.6,7

To address the inherent complexity of ML algorithms, 
Automated ML (AutoML) systems have been developed. 
AutoML differs from ML systems in that they aim to 
automatically select, compose, and optimize various 
ML algorithms for optimal performance for a specified 
outcome variable. The availability of such systems has 
facilitated access to AI methods and technology by non-
experts.5,8,9 Several AutoML systems are available, includ-
ing IBM AutoWatson (IBM Corp., Armonk, NY, USA) and 
Auto-WEKA (https://github.com/automl/autoweka).9 

Such systems differ mostly in their optimization tech-
niques or user interfaces.10 The use of AutoML systems 
within health care can improve health outcomes, reduce 
costs, and advance clinical research.11 One of the main 
benefits of using AutoML systems over conventional 
systems is their ease of use. This allows non-data science 
professionals, such as most orthodontic clinicians, to 
create, test, and run AI systems in their practices with-
out necessarily requiring a highly trained expert to assist 
them. However, more work needs to be done for the 
widespread adoption of this technology by healthcare 
professionals.11

The applications of AI in dentistry are rapidly expand-
ing. AI techniques and methods have been used to 
identify caries in radiographs12 and predict periodontal13 
and endodontic treatment outcomes,14 among others. 
In orthodontics, AI systems have been developed for 
automatic cephalometric tracing, automated diagnosis,15 
growth prediction,16 treatment outcome prediction,17 and 
cervical maturation determination.18 To date, 7 papers 
have reported the development of ML prediction models 
for orthodontic extractions. Six of these papers reported 
accuracies of 80%,3 87.5%,19 90.5%,20 93%,4 94.6%,21 
and 81%,22 respectively. The seventh article reported sev-
eral accuracies, according to the model and test, ranging 
from 65 to 98%.23 The usefulness of AutoML systems 
has not been assessed for the generation of models for 
the prediction of the need for orthodontic extractions.

This study aimed to generate prediction models for 
the need for dental extractions for orthodontic treat-
ment based on gender, model features, and cephalomet-
ric records using an AutoML.

MATERIALS AND METHODS

The sex and clinical data of the patients and cepha-
lometric data on comprehensive orthodontic treatments 
at an orthodontic clinic were obtained from an anony-
mized data bank of orthodontically treated cases be-
tween January 2018 and September 2019 from a single 
clinical practice run by two orthodontists in Santiago, 
Chile. These two experienced orthodontic practitioners, 
with more than 20 and 40 years of exclusive dedica-
tion to orthodontics, respectively (worked together for 
18 years), performed the diagnosis, treatment plan-
ning, and treatment of all the individuals included in 
this sample. The data were anonymized and processed 
in a spreadsheet before the conception of this study as 
follows: once each patient had their orthodontic ap-
pliances removed, the orthodontist in charge entered 
the initial clinical information, including the model and 
radiographic data and whether or not extractions were 
performed in the said case into a spreadsheet, avoid-
ing any data that would make the patient identifiable. 
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Approval for the use of the data from an anonymized 
databank was obtained from the Research Committee of 
the Faculty of Odontology at Universidad de los Andes 
(CPI ODO 26). 

The inclusion criteria included receiving consecutive 
treatments encompassing comprehensive orthodontic 
treatment in permanent dentition, using either buccal 
or lingual orthodontic fixed appliances. Patients who 
had incomplete records or received orthognathic surgi-
cal treatment, first-phase treatment, had one or more 
teeth other than the third molars absent at baseline, or 
presented with congenital malformations were excluded 
from the study.

The features used for the development of the optimal 
predictive models included sex, model variables, and 
cephalometric data and are shown in Table 1. The data 
obtained from the anonymized data bank included sev-
en variables considered relevant for predicting the need 
for extractions. The cephalometric data included in the 
anonymized database were obtained from cephalometric 
tracings by an experienced operator and reviewed by one 
of the two experienced orthodontists using Dolphin® 
Imaging version 11.95 (Dolphin Imaging, Chatsworth, 
CA, USA). The only dependent variable included was 
“Extraction” (NO/YES), as described in Table 1.

Three prediction settings were developed: the first in-
corporated sex and the model and cephalometric data, 
while the second and third incorporated only the model 
and cephalometric data, respectively. Each setting was 
entered into Auto-WEKA as a .csv (comma-separated 
values) file to optimize accuracy to identify the optimal 
model for each setting. The memory limit was set to 2 
GB, and the time limits set for Auto-WEKA were 5, 15, 
30, and 60 minutes and an overnight limit for which 
the system ran for at least 18 hours. After these settings 
were programmed, the “Run” button was clicked and the 
AutoML system was initiated. Auto-WEKA first performs 
an automated attribute (variable) selection process, in-
volving 2 algorithms with up to 4 hyperparameters that 
are optimized to obtain the best variables and prevent 
redundant and/or irrelevant variables.9 Auto-WEKA ap-
proaches the selected variables of the sample through 37 
learning algorithms, each one being evaluated with its 
respective hyperparameters, which add up to 160.9 Each 
hyperparameter can have multiple values, and the num-
ber of iterations may reach several for simulations that 
may run for several hours. To evaluate the performance, 
Auto-WEKA performs a 10-fold nested cross-validation 
system by default. This consists of a process that divides 
a sample automatically into 10 parts; 9 of them are used 
for the training/validation set and the 10th is used for a 
test set. The training/validation set was then subdivided 
into 10, with 9 parts used as the training set and the 
remaining one used as the validation set. Each training/

validation set iterated 10 times, to make every set be 
once the validation set. Also, the division training/vali-
dation vs. test set iterated 10 times, to make every parti-
tion to be a test set. This method has been described as 
a viable way of obtaining an optimally unbiased perfor-
mance while reducing overfitting.6,7

The model with the best accuracy (number of cases 
correctly classified by the model related to the final 
decision of the doctor) for each setting was considered 
optimal. We also recorded the following metrics for each 
model: algorithm used, sensitivity, false-positive rate 
(Type I error or 1-Specificity), precision (positive predic-
tive value), F-score (harmonic mean of the precision and 
sensitivity), Matthew’s correlation coefficient (correlation 
between the predicted class and reality), area under the 
receiver operating characteristic (ROC) curve, area under 
the curve Precision-Recall curve, and Kappa value. 

RESULTS

Out of the 314 orthodontic treatments available in 
the analyzed database, 214 met the inclusion criteria; 
44% of these were received by females. Extractions were 
performed for 38% of the cases. Further details on the 
sample are presented in Tables 2 and 3.

Five different extraction prediction models were gen-
erated per setting (one for each time limit set). The ac-
curacies obtained for the 5-, 15-, 30-, and 60-minute 
and overnight models were 80.37%, 86.45%, 80.37%, 
80.37%, and 93.93%, respectively. The last and best 
result was facilitated by feature selection, were the Au-
toML chose the best variables that predicted the out-
comes, which in this case were: maxillary arch discrep-
ancy, mandibular arch discrepancy, molar class-modified, 
Rickett’s maxillary depth, Rickett’s facial axis, cephalo-
metric molar relationship, and upper incisor protrusion. 
Based on these 7 variables, the system automatically 
created, using a multilayer perceptron algorithm, a 
model that was later optimized and tested following the 
nested cross-validation method.

For the second setting, the accuracies were 87.38%, 
81.78%, 81.78%, 79.91%, and 84.11% for the respec-
tive time limits; the best accuracy for this model was 
achieved for the 5-minute time limit. Using a feature 
selection algorithm, the following variables were used 
for a logistic model tree algorithm: maxillary arch dis-
crepancy, mandibular arch discrepancy, and molar class-
modified. 

Finally, the third model had the following accuracies 
for the respective time limits: 71.96%, 70.56%, 70.09%, 
70.56%, and 70.56%. The 5-minute time limit was as-
sociated with the highest accuracy, via a Sequential 
Minimal Optimization algorithm applied after choosing 
the best features for predicting the outcome. These fea-
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Table 1. Clinical and cephalometric variables included in this study

Variable Description

Sex Female or male

Model variable

   Overjet (mm) The distance between the incisal tips of the upper and lower incisors measured in 
the horizontal plane

   Overbite (mm) The distance between the incisal tips of the upper and lower incisors measured in 
the vertical plane

   Maxillary arch discrepancy (mm) Maxillary difference between the space available and the sum of the mesiodistal 
tooth width from second premolar to second premolar 

   Mandibular arch discrepancy (mm) Mandibular difference between the space available and the sum of the mesiodistal 
tooth width from second premolar to second premolar 

   Anterior bolton discrepancy (mm) Measure of the difference between the sum of the mesiodistal width of the front six 
mandibular teeth and the sum of the mesodistal width of the front six maxillary 
teeth multiplied by 0.772 

   Molar class, modified Numerical quantification in terms of cusps of difference, that is, with Class I being 
the value zero, a Class II of 1 cusp being a +1 and a Class III of 1 cusp being –1, 
and there are intermediate values such as, for example, a quarter cusp (0.25), a 
half cusp (0.5) and three quarters cusp (0.75)

   Canine class, modified Numerical quantification in terms of cusps of difference, that is, with Class I being 
the value zero, a Class II of 1 cusp being a +1 and a Class III of 1 cusp being –1, 
and there are intermediate values such as, for example, a quarter cusp (0.25), a 
half cusp (0.5) and three quarters cusp (0.75)

Sagittal cephalometric variable

   ANB (°) The angle formed by the Nasion-Point A plane and Nasion-Point B plane

   SNA (°) The angle formed by the Sella-Nasion plane and the Nasion-Point A plane

   SNB (°) The angle formed by the Sella-Nasion plane and the Nasion-Point B plane

   Ricketts’ facial convexity (mm) The distance between Point A and the facial plane

   Ricketts’ maxillary depth (°) The angle formed by the Frankfort plane and the plane from Nasion to Point A

   Ricketts’ facial depth (°) The angle between the facial plane and Frankfort plane

   Articular angle (S-Ar-Go) (°) The angle formed by the Sella-Articulare plane and the Articulare-Gonion plane

   Upper gonial angle (Ar-Go-N) (°) The angle formed by the Articulare-Gonion plane and the Gonion-Nasion plane

   Wits analysis (mm) Distance between the AO and BO Points, along the occlusal plane

   Maxillomandibular difference (mm) Difference between the Condylion-Anterior Nasal Spine distance and the 
Condylion-Pogonion distance 

   Cephalometric overjet (mm) The distance between the incisal tips of the upper and lower incisors measured 
along the occlusal plane

   Molar relationship (mm) The distance between the distal surfaces of the lower and upper molars measured 
along the occlusal plane

Vertical cephalometric variable

   Face height ratio (N-ANS/ANS-Me) (%) Proportion between the Nasion-Anterior Nasal Spine distance and the Anterior 
Nasal Spine-Menton distance

   Gonial angle (Ar-Go-Me) (°) The angle formed by the Articulare-Gonion plane and the Gonion-Menton plane

   Sum of the angles (°) Sum of the Articulare-Sella-Nasion angle, the Articular angle and the Gonial angle

   Lower gonial angle (N-Go-Me) (°) The angle formed by the Nasion-Gonion plane and the Gonion-Menton plane

   Jarabak Index (%) The ratio of posterior facial height (Sella-Gonion) to anterior facial height (Nasion-
Gnathion)

   SN-GoGn (°) The angle formed by the Sella-Nasion plane and the Gonion-Gnathion plane
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tures included Rickett’s maxillary depth, Rickett’s facial 
axis, cephalometric molar relationship, upper incisor pro-
trusion, and wits appraisal.

Table 4 shows the other outcomes for each of these 
settings.

DISCUSSION

This study is the first to explore the performance of an 
AutoML system for the generation of predictive models 
for dental extractions for orthodontic treatments using 
sample sizes comparable to those used for traditional 
ML systems in the past.3,4,19-22 Our inclusion and exclu-
sion criteria were similar to those used in previous stud-
ies on traditional ML methods,3,4,19-22 which purposely 
excluded orthognathic patients and treatments for the 
absence of at least one tooth at baseline. The AutoML 
technology allowed us to achieve accuracies comparable 
to those reported in the literature using traditional ML 
techniques, albeit with a simplified methodology requir-

ing minimal ML expertise. 
This study does not advocate for automated decision-

making for the extraction or non-extraction of teeth. 
We consider these AI tools as additional resources for 
the practitioner and can even be used after an initial 
judgment, with considerations of some characteristics 
inherent to these systems. First, ML approaches are rela-
tively black boxes, and the contribution of each feature 
may be difficult to assess;24 in our case, we determined 
the variables used, but not the contribution of each of 
them, despite the significant research advances on mak-
ing ML models more interpretable.25 The overall decision 
will take into account other factors that the tool may 
not have access to, such as age, previous diseases and 
dental interventions, presence of root resorption, func-
tional factors, growth potential, patient preferences, as 
well as clinician-related diagnostic and therapeutic ori-
entations, among others. Hence, like in any intervention 
involving the wellbeing of humans, the doctor’s critical 
judgment should remain at the center of the process. An 

Table 1. Continued

Variable Description

   PP-MP (°) The angle formed by the palatal plane and the mandibular plane

   FMA (°) The angle formed by the Frankfort plane and the mandibular plane

   Ricketts’ facial axis (°) The angle formed by the Pt Point-Gnathion plane and the Nasion-Basion plane

   Cephalometric overbite (mm) The distance between the tips of the lower and upper incisors measured 
perpendicular to the occlusal plane

Dental cephalometric variable

   U1-APo (mm) The distance from the tip of the upper incisor to the “A-Po” plane

   U1-PP (°) The angle between the long axis of the upper incisor and the palatal plane

   L1-APo (mm) The distance from the tip of the lower incisor to the “A-Po” plane

   IMPA (°) The angle between the long axis of the lower incisor and the mandibular plane

   Interincisal angle (°) The angle formed by the long axes of the central incisors

Soft tissue cephalometric variable

   Labial gap (mm) The distance between the upper and lower Stomions, measured in the vertical 
plane

   Upper lip to SnPg’ (mm) The distance between the upper Labrale and the Subnasal-Soft Tissue Pogonion 
plane, along the horizontal plane

   Lower lip to SnPg’ (mm) The distance between the lower Labrale and the Subnasal-Soft Tissue Pogonion 
plane, along the horizontal plane

   Upper lip to subnasal vertical (mm) The distance between the upper Labrale and a vertical plane proyected over 
Subnasal Point

   Lower lip to subnasal vertical (mm) The distance between the lower Labrale and a vertical plane proyected over 
Subnasal Point

   Upper incisor exposure (mm) The distance between the tips of the upper incisor and the upper Stomion, along 
the vertical plane

Outcome variable

   Extractions NO/YES Extractions done or not in the patient due to orthodontic reasons
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Table 2. Detailed description of the sample

Variable Without extraction With extraction p-value Global

Model variable

   Overjet (mm) 3.17 ± 1.42 3.91 ± 2.25 0.004* 3.448 ± 1.804

   Overbite (mm) 3.55 ± 1.83 3.08 ± 1.82 0.069 3.376 ± 1.836

   Maxillary arch discrepancy (mm) 0.24 ± 2.86 −2.30 ± 4.03 0.000* −0.722 ± 3.565

   Mandibular arch discrepancy (mm) −0.09 ± 2.50 −2.17 ± 2.75 0.000* −0.882 ± 2.786

   Anterior bolton discrepancy (mm) −0.58 ± 1.14 −0.36 ± 1.23 0.185 −0.498 ± 1.170

   Molar class, modified 0.22 ± 0.35 0.51 ± 0.39 0.000* 0.329 ± 0.390

   Canine class, modified 0.36 ± 0.32 0.52 ± 0.37 0.001* 0.418 ± 0.347

Sagittal cephalometric variable

   ANB (°) 2.62 ± 1.89 3.52 ± 2.39 0.003* 2.962 ± 2.134

   SNA (°) 80.87 ± 3.67 80.12 ± 3.64 0.147 80.585 ± 3.671

   SNB (°) 78.25 ± 3.41 76.60 ± 3.33 0.000* 77.624 ± 3.466

   Rickett’s facial convexity (mm) 1.79 ± 2.55 3.09 ± 3.06 0.001* 2.278 ± 2.818

   Rickett’s maxillary depth (°) 89.05 ± 2.72 87.54 ± 2.44 0.000* 90.562 ± 3.083

   Rickett’s facial depth (°) 90.71 ± 2.93 90.32 ± 3.32 0.370 88.479 ± 2.710

   Articular angle (S-Ar-Go) (°) 146.08 ± 6.71 145.32 ± 6.43 0.415 145.791 ± 6.603

   Upper gonial angle (Ar-Go-N) (°) 50.07 ± 4.29 50.03 ± 3.78 0.945 50.057 ± 4.092

   Wits analysis (mm) −0.74 ± 2.78 0.89 ± 3.29 0.000* −0.125 ± 3.079

   Maxillomandibular difference (mm) 32.95 ± 4.83 31.49 ± 4.59 0.030* 32.393 ± 4.748

   Cephalometric overjet (mm) 4.23 ± 1.61 4.67 ± 2.22 0.095 4.395 ± 1.873

   Molar relationship (mm) −0.48 ± 1.40 0.61 ± 1.86 0.000* −0.067 ± 1.668

Vertical cephalometric variable

   Face height ratio (N-ANS/ANS-Me) (%) 82.41 ± 7.04 81.02 ± 6.55 0.152 81.884 ± 6.877

   Gonial angle (Ar-Go-Me) (°) 121.75 ± 6.53 123.18 ± 5.16 0.095 122.29 ± 6.077

   Lower gonial angle (N-Go-Me) (°) 71.66 ± 4.77 73.16 ± 4.39 0.023* 72.228 ± 4.674

   Jarabak Index (%) 65.87 ± 4.85 64.93 ± 4.33 0.154 65.511 ± 4.669

   SN-GoGn (°) 28.87 ± 5.86 30.73 ± 5.58 0.023* 29.572 ± 5.814

   PP-MP (°) 24.61 ± 5.38 25.99 ± 4.72 0.058 25.132 ± 5.171

   FMA (°) 22.51 ± 5.10 24.00 ± 4.50 0.032* 23.073 ± 4.925

   Rickett’s facial axis (°) 89.17 ± 4.28 87.42 ± 3.59 0.002* 88.509 ± 4.115

   Cephalometric overbite (mm) 4.71 ± 4.81 3.55 ± 4.66 0.085 4.267 ± 4.774

Dental cephalometric variable

   U1-APo (mm) 6.18 ± 2.36 7.53 ± 2.83 0.000* 6.693 ± 2.623

   U1-PP (°) 109.97 ± 6.14 110.62 ± 7.08 0.479 110.214 ± 6.503

   L1-APo (mm) 2.18 ± 2.24 2.94 ± 2.37 0.019* 2.466 ± 2.316

   IMPA (°) 93.67 ± 6.17 96.57 ± 7.44 0.002* 94.766 ± 6.812

   Interincisal angle (°) 131.76 ± 9.82 126.82 ± 11.46 0.001* 129.891 ± 10.716

Soft tissue cephalometric variable

   Labial gap (mm) 2.25 ± 2.12 2.54 ± 2.63 0.377 2.357 ± 2.322

   Upper lip to SnPg’ (mm) 4.06 ± 2.09 4.69 ± 2.12 0.035* 4.297 ± 2.118

   Lower lip to SnPg’ (mm) 3.28 ± 2.32 3.58 ± 2.35 0.362 3.393 ± 2.330

   Upper lip to subnasal vertical (mm) 1.94 ± 2.25 2.04 ± 2.68 0.769 1.979 ± 2.416

   Lower lip to subnasal vertical (mm) −2.6 ± 3.34 −3.77 ± 5.36 0.050* −2.882 ± 3.547

   Upper incisor exposure (mm) 4.03 ± 1.99 4.17 ± 2.06 0.623 4.081 ± 2.013

Values are presented as mean ± standard deviation.
*Significance at a 0.05 level.
See Table 1 for definition of each clinical and cephalometric variable.

https://e-kjo.org/journal/view.html?uid=1949&vmd=Full#F1
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AI-based system should serve as a complementary piece 
of information.

For our sample, the prevalence of cases of extractions 
was 38%, which is expected for an orthodontic clinic 
and is consistent with those reported in the literature, 
ranging from 50% in England for patients between 18 
and 24 years of age26 to 45.8% in Brazil,27 40% in Chi-
na,3 and 25% in the United States.28 Although the non-
extraction protocol was dominantly used for our sample, 
a 40:60 proportion (similar to the 38:62 of our study) is 
usually accepted for a balanced sample. The imbalance 
in our sample may be considered minimal.29 The final 
composition of the sample was determined by the inclu-
sion and exclusion criteria applied to the anonymized 
database. It was considered that increasing the extrac-
tion group could generate a biased sample. Considering 
the similarities between our sample and that of other 
studies previously cited on dental extractions and ML,3,4 
we considered this sample suitable for the development 
of optimal prediction models.

The prediction of the need for extractions as a YES/NO 
dichotomous variable based on the combination of the 
model and cephalometric data showed an accuracy of 
93.9% and an F1-value of 0.939 using a multilayer per-
ceptron. This result is consistent with those published by 
other authors using similar methods but with conven-
tional ML instead of Auto-ML. The reported accuracies 
ranged from 80 to 94.6%.3,4,19-22 The study by Li et al.21 
reported a sensitivity of 94.6%, specificity of 93.8%, and 
an area under the ROC curve of 0.982, while the current 
study achieved 93.9%, 92%, and 0.915, respectively. 

Considering the other two settings, which only used 
model or cephalometric data, the performance was 
15.4% better when using only model information than 
when using only cephalometric information. This sug-

gests that model variables may be more relevant for 
prescribing extractions than strictly cephalometric data. 
This may be explained by the fact that tooth extrac-
tions are highly affected by maxillary and mandibular 
arch discrepancies, variables that were included during 
the feature selection process for both settings 1 and 2. 
Nonetheless, the best performance was obtained when 
using both model and cephalometric data, with an ac-
curacy of 6.5% greater than that achieved with the use 
of only model information and 21.9% greater than that 
with the use of only cephalometric data. All the variables 
automatically selected for setting 2 were also included 
for setting 1. In the same way, all variables chosen for 
setting 3, excluding one (Wits Appraisal), were also se-
lected by the AutoML system for setting 1, showing high 
consistency in this regard. 

Despite being included in this study, gender was never 
considered relevant during the feature (variable) selec-
tion process by Auto-WEKA. Some variables, such as 
overjet (OJ) and overbite (OB), were included as both 
model and cephalometric variables, creating an overlap 
between these two versions that could traditionally lead 
to overexpression of this feature in the models. Never-
theless, since the system automatically selects the best 
features and omits the redundant and/or irrelevant vari-
ables, the study considered feeding the Auto-AI system 
with all the variables available in the database and allow 
the system to automatically determine which ones to in-
clude in the models. For OJ and OB, no final algorithm 
considered the model or cephalometric data for these 
variables.

There is no minimum requirement for the sample size 
required to perform ML and this study used a relatively 
large database in the context of the published literature 
in the topic, it is accepted that algorithms reach their 

Table 3. Summarized description of the sample

Variable Without extraction With extraction Total

Sex

   Female 72 (54) 48 (59) 120 (56)

   Male 61 (46) 33 (41) 94 (44)

Skeletal sagittal class

   Class I (0 ≤ ANB ≤ 4) 95 (71) 44 (54) 139 (65)

   Class II (ANB > 4) 30 (23) 32 (40) 62 (29)

   Class III (ANB < 0) 8 (6) 5 (6) 13 (6)

Skeletal vertical pattern

   Normodivergent (28 ≤ SN-GoGN ≤ 32) 56 (42) 40 (49) 96 (45)

   Hypodivergent (SN-GoGn < 28) 61 (46) 28 (35) 89 (42)

   Hyperdivergent (SN-GoGn > 36) 16 (12) 13 (16) 29 (13)

Values are presented as number (%).
See Table 1 for definition of each cephalometric variable.

https://e-kjo.org/journal/view.html?uid=1949&vmd=Full#F1
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greatest potential with greater data sets. From that per-
spective, the sample for this study was small, as with all 
other studies published to date in the field. Our sample 
was obtained from an anonymized databank, and it was 
not possible to perform a reliability analysis, which is a 
common issue in the field3,4,19-22 and is more evident in 
our study as two practitioners generated the data. Nev-
ertheless, both doctors had worked together for almost 
two decades and systematically discussed the diagnosis 
and treatment plans of complex cases (i.e. any border-
line extraction or compensatory orthodontic case). We 
believe that this favors the consistency of the treatments 
plans of both doctors. The criterion for this process is 
based on cephalometric skeletal, dental, and soft tissue 
readings, as well as clinical aspects that lie within a nor-
mal range. Once a diagnosis is reached, treatment plan-
ning is performed to modify abnormal occlusal char-
acteristics without negatively affecting the soft tissues 
of the patient, hence, defining the need for extraction 
or non-extraction treatment protocols. Both clinicians 
plan their treatments aiming at optimal occlusal and 
facial results, using mainly active self-ligating brackets 
and contemporary orthodontic techniques, including 
temporary anchorage devices whenever deemed neces-
sary. Therefore, the decision to extract or not to extract 
depended on the clinical presentation of the dentition 
combined with skeletal, dental, and soft tissue variables. 
Whenever possible, the non-extraction approach was 
preferred, as long as satisfactory occlusal and facial bal-
ance could be achieved. 

The model generated does not represent the analy-
sis of a particular doctor, but it is a third and singular 
algorithm, which could not represent the opinion of 
anyone despite being based on data provided by two 
orthodontists. In this line, future research should include 
treatments by several orthodontists, which would lead 
to the generation of a model with outcomes represent-
ing the unbiased recommendations of the professionals 
included. 

Another potential limitation of this study is the degree 
of overfitting that may have occurred in the models. 
While the nested cross-validation system greatly reduces 
overfitting, there can always be a remnant, as with any 
ML design. This overfitting could explain why some 
models trained for a few minutes had better perfor-
mance than those developed for several hours. 

Within the decision-making process in Orthodontics, 
the prescription of extractions is of special relevance, 
given its irreversible nature as well as the fact that it 
severely conditions both the occlusal and soft tissue 
response to treatment. In addition, the indication of 
extractions is based on several factors, including the 
clinical, cephalometric, and socio-cultural.30 This multi-
factorial nature can make clinical decision-making par-

ticularly difficult. 
The results of our work suggest a great potential 

for this readily available AutoML system in the field of 
orthodontics. Through the development of highly reli-
able predictive models21 (necessarily including all the 
other variables previously named), AutoML systems can, 
through a simple methodology and minimal ML exper-
tise, assist clinicians in challenging clinical decision-
making scenarios such as tooth extractions. 

CONCLUSION

Three different models for the prediction of the orth-
odontic need of dental extractions were generated and 
tested using an AutoML method, and they achieved 
accuracies of up to 93.9% for predicting the need for 
tooth extractions, similar to those obtained by more 
complex methods.

Prediction models for the need for dental extractions 
achieve their best performance when model and cepha-
lometric data are combined, although model data seem 
more relevant.

The use of AutoML systems simplifies the process of 
model generation, making it less operator-dependent 
and allowing the generation of several models for accu-
rate predictions. 
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