DOI QR코드

DOI QR Code

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches

전문가의 형태소 분류를 활용한 과학 논증 자동 채점

  • Received : 2020.05.21
  • Accepted : 2020.06.30
  • Published : 2020.06.30

Abstract

We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

본 연구는 실제 교실에서 이루어진 학생의 과학 논증과정을 기계학습을 활용한 자동 채점에 적용함으로써, 논증 자동 채점의 가능성 및 개선 방향을 탐색한다. 분자 구조에 대한 고등학생의 과학 논증수업 중 발생한 2,605개의 모든 발화를 대상으로 연구를 진행하였다. 지도 학습을 위해 5가지의 논증 요소로 발화를 분류하였고, 분류된 발화를 대상으로 텍스트 전처리를 수행하였다. 전처리된 학생 발화를 활용하여 서포트 벡터 머신, 의사결정나무, 랜덤 포레스트, 인공신경망의 기계 학습 방법으로 자동 채점 모델을 구성하였다. 불용어 처리가 되지 않은 학생 발화를 활용한 자동 채점의 결과 랜덤 포레스트의 정확도는 65.96%, kappa는 0.5298의 유미한 결과를 얻었다. 불용어 처리를 수행한 학생 발화를 활용한 새로운 채점 모델의 결과 채점의 정확도가 크게 변화하지 않음에도 논증 발화 중 과학 용어 및 논증 요소의 담화표지가 채점 모델의 분류 기준이 되는 결과를 얻었다. 또한 인간 전문가의 논증 채점 과정을 분석하여 얻어진 전문가 형태소를 자동 채점 모델에 생성 규칙 알고리즘으로 적용하였다. 그 결과 의사결정나무에서 반박에 대한 재현율(recall)이 21.74% 증가하였다. 이에 본 연구 결과는 과학 교육 연구에서 기계 학습 및 논증에 대한 자동 채점의 활용 가능성과 연구 방향성을 제안하였다.

Keywords

References

  1. Ah, H. Y. (2018). A Study of Counter-Arguments as Observed in Debate of High School Students (Unpublished Master's Thesis). Pusan national university, Pusan.
  2. Baek, Y. K. (1989). The Educational Potentials of Expert Systems. Journal of Educational Technology, 5(1), 79-91.
  3. Beggrow, E. P., Ha, M., Nehm, R. H., Pearl, D., & Boone, W. J. (2014). Assessing scientific practices using machine-learning methods: How closely do they match clinical interview performance?. Journal of Science education and Technology, 23(1), 160-182. https://doi.org/10.1007/s10956-013-9461-9
  4. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  5. Bridgeman, B., Trapani, C., & Attali, Y. (2012). Comparison of human and machine scoring of essays: Differences by gender, ethnicity, and country. Applied Measurement in Education, 25(1), 27-40. https://doi.org/10.1080/08957347.2012.635502
  6. Buchanan, B. G., & Feigenbaum, E. A. (1980). The stanford heuristic programming project: Goals and activities. AI Magazine, 1(1), 25-30. https://doi.org/10.1609/aimag.v1i1.89
  7. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  8. Cho, H. S., & Nam, J. (2014). The impact of the argument-based modeling strategy using scientific writing implemented in middle school science. Journal of the Korean Association for Science Education, 34(6), 583-592. https://doi.org/10.14697/jkase.2014.34.6.0583
  9. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  10. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
  11. Engin, G., Aksoyer, B., Avdagic, M., Bozanli, D., Hanay, U., Maden, D., & Ertek, G. (2014). Rule-based Expert Systems for Supporting University Students. Procedia Computer Science, 31, 22-31. https://doi.org/10.1016/j.procs.2014.05.241
  12. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  13. Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems?. The journal of machine learning research, 15(1), 3133-3181.
  14. Giarratano, J. C., & Riley, G. (1998). Expert systems: Principles and programming. Boston: PWS.
  15. Ha, M. (2016). Scoring Korean Written Responses Using English-Based Automated Computer Scoring Models and Machine Translation: A Case of Natural Selection Concept Test. Journal of The Korean Association For Science Education, 36(3), 389-397. https://doi.org/10.14697/jkase.2016.36.3.0389
  16. Ha, M., Lee, G.-G., Shin, S., Lee, J.-K., Choi, S., Choo, J., Kim, N., Lee, H., Lee, J., Lee, J., Jo, Y., Kang, K., & Park, J. (2019). Assessment as a Learning-Support Tool and Utilization of Artificial Intelligence: WA3I Project Case. School Science Journal, 13(3), 271-282. https://doi.org/10.15737/SSJ.13.3.201908.271
  17. Jimenez-Aleixandre, M. P., Bugallo Rodriguez, A., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  18. Jun, C.-H. (2015). Data mining techniques. Seoul: Hannarea Publishing Co.
  19. Kang, N.-H., & Lee, E. K. (2013). Argument and argumentation: A review of literature for clarification of translated words. Journal of The Korean Association For Science Education, 33(6), 1119-1138. https://doi.org/10.14697/jkase.2013.33.6.1119
  20. Kang, S. M., Kwak, K. H., & Nam, J. H. (2006). The effects of argumentation-based teaching and learning strategy on cognitive development, science concept understanding, science-related attitude, and argumentation in middle school science. Journal of the Korean Association for Science Education, 26(3), 450-461.
  21. Kelly, G. J., Druker, S., & Chen, C. (1998). Students' reasoning about electricity: Combining performance assessments with argumentation analysis. International journal of science education, 20(7), 849-871. https://doi.org/10.1080/0950069980200707
  22. Kevin P. Murphy. (2012). Machine Learning: A Probabilistic Perspective. Cambridge, MA: The MIT Press.
  23. KICE(Korea Institute Of Curriculum & Evaluation). (2006). A Study on the Development and Introduction of an Automated Scoring Program(RRI 2006-6). Retrieved from http://kice.re.kr/resrchBoard/view.do?seq=19388&s=kice&m=030102
  24. Kil, H.-h. (2018). The Study of Korean Stopwords list for Text mining. The Korean Language and Literature, 78, 1-25.
  25. Kim, M., & Ryu, S. (2019). Development of Scientific Conceptual Understanding through Process-Centered Assessment that Visualizes the Process of Scientific Argumentation. Journal of the Korean Association for Science Education, 39(5), 651-668.
  26. Kim, S. J. (2019). A Study on the Extraction and Validation of Automatic Argumentative Writing Scoring Feature Using Text Mining (Unpublished Master's Thesis). Korea national university of education, Chung-Buk.
  27. KOFAC (Korea Foundation for the Advancement of Science & Creativity) (2019). Scientific Literacy for All Koreans, Korean Science Education Standards for the Next Generation. Seoul: KOFAC.
  28. Kwon, J.-S., & Kim, H.-B. (2016). Exploring small group argumentation shown in designing an experiment: Focusing on students' epistemic goals and epistemic considerations for activities. Journal of the Korean Association for Science Education, 36(1), 45-61. https://doi.org/10.14697/jkase.2016.36.1.0045
  29. Lantz, B. (2013). Machine learning with R. Birmingham, UK: Packt Publishing Ltd.
  30. Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  31. Lee, D., Yeon, J., Hwang, I., & Lee, S. (2010). KKMA: A tool for utilizing sejong corpus based on relational database. Journal of KIISE: Computing Practices and Letters, 16(11), 1046-1050.
  32. Lee, G.-G., Ha, H., Hong, H.-G., & Kim, H.-B. (2018). Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning. Journal of The Korean Association For Science Education, 38(2), 219-234. https://doi.org/10.14697/JKASE.2018.38.2.219
  33. Lee H.-J., & Park Y.-M. (2019). A Study on the Search for Automatic Scoring Variables by Comparison of Text Studies Using Natural Language Processing. The research in writing, 41, 255-287.
  34. Lee, H.-S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Automated text scoring and real-time adjustable feedback: Supporting revision of scientific arguments involving uncertainty. Science Education, 103(3), 590-622. https://doi.org/10.1002/sce.21504
  35. Lee, S., & Nam, J. (2016). Impact of Student Assessment Activities on Reflective Thinking in High School Argument-Based Inquiry. Journal of The Korean Association For Science Education, 36(2), 347-360. https://doi.org/10.14697/jkase.2016.36.2.0347
  36. Lee, S., & Nam, J. (2018). Impact of Student Assessment Activities on Claim and Evidence Formation in High School Argument-Based Inquiry. Journal of the Korean Chemical Society, 62(3), 203-213. https://doi.org/10.5012/JKCS.2018.62.3.203
  37. Linn, M. C., Gerard, L., Ryoo, K., McElhaney, K., Liu, O. L., & Rafferty, A. N. (2014). Computer-guided inquiry to improve science learning. Science, 344(6180), 155-156. https://doi.org/10.1126/science.1245980
  38. Liu, O. L., Rios, J. A., Heilman, M., Gerard, L., & Linn, M. C. (2016). Validation of automated scoring of science assessments. Journal of Research in Science Teaching, 53(2), 215-233. https://doi.org/10.1002/tea.21299
  39. Mao, L., Liu, O. L., Roohr, K., Belur, V., Mulholland, M., Lee, H. S., & Pallant, A. (2018). Validation of automated scoring for a formative assessment that employs scientific argumentation. Educational Assessment, 23(2), 121-138. https://doi.org/10.1080/10627197.2018.1427570
  40. Martin, T., & Sherin, B. (2013). Learning analytics and computational techniques for detecting and evaluating patterns in learning: An introduction to the special issue. Journal of the Learning Sciences, 22(4), 511-520. https://doi.org/10.1080/10508406.2013.840466
  41. McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153-191. https://doi.org/10.1207/s15327809jls1502_1
  42. McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett, & P. Shah (Eds.), Thinking with data: The proceedings of 33rd Carnegie symposium on cognition. Mahwah, NJ: Erlbaum.
  43. Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. Harlow: Addison-Wesley.
  44. Nehm, R. H., Ha, M., & Mayfield, E. (2012). Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations. Journal of Science Education and Technology, 21(1), 183-196. https://doi.org/10.1007/s10956-011-9300-9
  45. Ong, N., Litman, D., & Brusilovsky, A. (2014). Ontology-based argument mining and automatic essay scoring. In Proceedings of the First Workshop on Argumentation Mining (pp. 24-28). Baltimore, MD.
  46. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of research in science teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  47. Park, C., Kim, Y, Kim, J, Song, J., & Choi, H. (2015). R data mining. Seoul: Kyowoo.
  48. Park, E. L., & Cho, S. (2014). KoNLPy: Korean natural language processing in Python. In Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology (pp. 133-136). Chuncheon, Korea.
  49. Park, J., & Kim, H.-B. (2018). Exploring Teachers' Responsive Teaching Practice in Argumentation-Based Science Classroom: Focus on Structural and Dialogical Aspects of Argument. Journal of The Korean Association For Science Education, 38(1), 69-85. https://doi.org/10.14697/jkase.2018.38.1.69
  50. Ripley, B., & Venables, W. (2020). Package 'nnet'. R package version, 7.3-14. Retrieved April 28, 2020, from https://cran.r-project.org/web/packages/nnet
  51. Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach. Harlow: Pearson.
  52. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science education, 92(3), 447-472. https://doi.org/10.1002/sce.20276
  53. Shen, L. (2019). A Study on Functions of Korean Discourse Markers (Unpublished Doctoral Dissertation). Yonsei University, Seoul.
  54. Shin, H. S. & Kim, H.-J. (2012). Development of the Analytic Framework for Dialogic Argumentation Using the TAP and a Diagram in the Context of Learning the Circular Motion. Journal of the Korean Association for Science Education, 32(5), 1007-1026. https://doi.org/10.14697/jkase.2012.32.5.1007
  55. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International journal of science education, 28(2-3), 235-260. https://doi.org/10.1080/09500690500336957
  56. Song, J., Kang, S. J., Kwak, Y., Kim, D., Kim, S., Na, J., ... & Son, Y. A. (2019). Contents and Features of' Korean Science Education Standards (KSES)'for the Next Generation. Journal of The Korean Association For Science Education, 39(3), 465-478. https://doi.org/10.14697/JKASE.2019.39.3.465
  57. Song, M.-Y., Noh, E.-H., & Sung, K.-H. (2016). Analysis on the Accuracy of Automated Scoring for Korean Large-scale Assessments. The Journal of Curriculum and Evaluation, 19(1), 255-274. https://doi.org/10.29221/jce.2016.19.1.255
  58. Toulmin, S. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
  59. Yang, I. H., Lee, H. J., Lee, H. N., & Cho, H. J. (2009). The development of rubrics to assess scientific argumentation. Journal of The Korean Association For Science Education, 29(2), 203-220.
  60. Yoo, J. E. (2015). Random forests, an alternative data mining technique to decision tree. Journal of Educational Evaluation, 28(2), 427-448.
  61. Yoo. J. E. (2019). Machine Learning for Large-scale/Panel Data and Learning Analytics Data Analysis. Journal of Educational Technology, 35(2), 313-338. https://doi.org/10.17232/KSET.35.2.313
  62. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008

Cited by

  1. 기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석 vol.41, pp.3, 2020, https://doi.org/10.14697/jkase.2021.41.3.203