• Title/Summary/Keyword: Au-Co alloy

Search Result 31, Processing Time 0.027 seconds

A study on Au-Sn alloy plating layer improving reliability of electrical contacts (전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구)

  • Choi, Jong Hwan;Son, Injoon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.408-416
    • /
    • 2022
  • In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers (금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향)

  • Lee, Jiwoong;Son, Injoon
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.6
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF

Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin

  • Choo, Seung-Sik;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.392-399
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS. Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS. Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (P<.05). However, in Ti alloy, there was no significant difference between Alloy Primer and MAC-Bond II. Tarnished Co-Cr and Au-Ag-Pd alloy surfaces presented significantly decreased shear bond strength. CONCLUSION. Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys.

CO Adsorption and Reaction on Clean and Zn-deposited Au(211) surface

  • Jo, Sang-Wan;Mbuga, F.;Ogasawara, H.;Nilsson, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.128.2-128.2
    • /
    • 2013
  • Crucially, effective catalysts must be capable of efficiently catalyzing the protonation of adsorbed CO to adsorbed CHO or COH. One of the strategies is alloying with metals with higher oxygen affinity and Au-Zn alloy is one of the best candidates. At first, we made Au-Zn alloy using vacuum evaporating method. Zn was deposited on the Au(211) surface and the amount was estimated by X-ray photoelectron spectroscopy (XPS) using the relative sensitivity of Au 4f and Zn 3d. We investigated CO adsorption on a clean Au(211) and Au-Zn alloy using temperature-programmed desorption (TPD) and XPS. From the TPD results, we can conclude that the presence of the particular step sites at the Au(211) surface imparts stronger CO bonding and Zn atoms are sitting on the step sites at the Au(211) when Zn is deposited. The XPS results show the oxygen atoms of CO bond Zn atoms on Au-Zn surface. It should be an evidence that alloying Zn atoms that has high oxygen affinity into an electrocatalyst may allow CHO* to bind to the surface through both the carbon and oxygen atoms.

  • PDF

Deposition Optimization and Bonding Strength of AuSn Solder Film (AuSn 솔더 박막의 스퍼터 증착 최적화와 접합강도에 관한 연구)

  • Kim, D.J.;Lee, T.Y.;Lee, H.K.;Kim, G.N.;Lee, J.W.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.49-57
    • /
    • 2007
  • Au-Sn solder alloy were deposited in multilayer and co-sputtered film by rf-magnetron sputter and the composition control and analysis were studied. For the alloy deposition condition, each components of Au or Sn were deposited separately. On the basis of pure Sn and Au deposition, the deposition condition for Au-Sn solder alloy were set up. As variables, the substrate temperature, the rf-power, and the thickness ratio were used for the optimum composition. For multilayer solder alloy, the roughness and the composition of solder alloy were controlled more accurately at the higher substrate temperature. In contrast, for co-sputtered solder, the substrate temperature influenced little to the composition, but the composition could be controlled easily by rf-power. In addition, the co-sputtered solder film mostly consisted of intermetallic compound, which formed during deposition. The compound were confirmed by XRD. Without flux during bonding of solder alloy film on leadframe, the adhesion strength were measured. The maximum shear stress was $330(N/mm^2)$ for multilayer solder with Au 10wt% and $460(N/mm^2)$ for co-sputtered solder with Au 5wt%.

  • PDF

Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent (티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating (비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향)

  • Kim, DongHyun;Han, Jaeho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS (XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구)

  • 김경중;문대원;이광우
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.106-114
    • /
    • 1992
  • Abstract-Quantitative surface analysis of Co-Ni and Au-Cu alloys by XPS and SIMS was studied. For Co-Ni alloy, quantitative XPS analysis could be done within 1-2% relative error with pure element standards without any correction. For Au-Cu, quantitative XPS analysis was not possible without any correction. But it could be done with standard alloys of various composition within 1-2% relative error. Without standard alloys, Au-Cu alloys could be analyzed by XPS within 10% relative error with pure element standards. For SIMS analysis of Co-Ni alloys, the relative secondary ion yields of Co+/Nit has linear relation with ratio of each composition so that quantitative SIMS analysis was possible for Co-Ni alloys. Preliminary results of XPS round robin test of VAMAS-SCA Japan Project are given.

  • PDF