• Title/Summary/Keyword: Au/Cu

Search Result 473, Processing Time 0.034 seconds

MEIS를 이용한 Cu3Au(100)의 Surface Induced disorder 직접관찰

  • 오두환;강희재;채근화;김현경;문대원
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.179-179
    • /
    • 1999
  • Cu3AU(100) 단결정은 fcc 구조를 가지고 있으며 (100)면은 Cu와 Au가 1:1로 존재하고 가운데(200)면은 Cu만 존재한다. 따라서 Au 층은 (100)면에서만 존재하여 각 Au층은 서로 0.5nm 떨어져 있다. 이와 같은 Cu3Au(100) 단결정을 MEIS(Medium Energy Ion Scattering Spectroscopy) 실험 장비를 사용하여 0.35nm 떨어져 있는 Single unit cell의 윗면과 아래면, 즉 첫 층의 Au와 셋째층의 Au의 층분리를 통해서, 온도 변화에 따른 Cu3Au(100) 단결정의 표면 물리적 현상인 surface induced disorder을 밝혀내고자 한다. 우선 두 Au층의 분리 시도는 수소이온을 이용한 실험 조건에서는 extremely glancing exit angle 등 극한의 산란조거에서도 성공하지 못하였다. 깊이 분해능을 정해주는 electronic energy loss를 극대화하기 위해 수소이온이 아닌 질소 이온을 사용하여 energy spectra를 측정해 본 결과 아래 그림에서와 같이 표면 Au 층과 표면 셋째 Au층을 구분할 수 있었다. <110>으로 align된 조건에서는 셋째층의 Au 원자들이 완전히 shadow cone 내부에 존재하여 관측되지 않지만 9.75$^{\circ}$ tilt 한 경우 셋째층의 Au 원자들이 shadow cone 바깥으로 나오게 되어 그림에서와 같이 첫째 층과 셋째 층이 확실히 분리되어 측정되었다. 이를 바탕을 Cu3Au(100)의 온도변화에 다른 order disorder and segregation 현상을 측정하였다. ordered Cu3Au(100)은 28$0^{\circ}C$ 근처에서 surface층이 먼저 disordered상으로 바뀌는 surface induced disorder 현상이 일어나고 bulk transition 온도 39$0^{\circ}C$ 이하에서 R.T으로 온도를 낮추면 본래의 ordered 구조로 되돌아간다. 하지만 bulk transition 온도를 지나면 order-disorder transition이 비가역적이고 segregation 현상이 일어난다.

  • PDF

Study on the Corrosin Properties of Au-Ag-Cu Dental Alloys (치과용 Au-Ag-Cu계 합금의 부식특성에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.23-43
    • /
    • 1992
  • Corrosion characteristics of four commerial gold-based dental alloys(C-1; Au75%, Ag13.9%, Pd3%, Cu & etc.,8.1%, C-2 ;Au 52.08, Ag 24%, Pd 5%, Cu & etc.,18.92, C-3 ; Au 53%, Ag 22%, Pd 5%, Pt 3% Cu & etc.,17%, C-4 ; Au 53%, Pd4, Pt1.5%, Ag & Cu & etc.,41.5%) and four experimental ternary Au-Ag-Cu alloys(E-1 ; Au 50%, Ag 30%, Cu 20%, E-2 ; Au 50%, Ag 20%, Cu 30%, E-3 ; Au 50%, Ag 10%, Cu 40%, E-4 ; Au 50%, Ag 40%, Cu 10%) were investigated by potentiodynamic polarization analysis and the structure was examined by optical microscope and SEM. All corrosion testing was conducted in 1% NaCl solution. The main results are as follows : 1. The corrosion resistence of commercial alloys was decreased in the order of C-1, C-3, C-4, C-2. C-2. 2. The E-1 and E-3 ternary alloys exhibits the higher corrosion resistence than E-2 and E-4 alloys. 3. The cast microstructure of alloys reveals dendrite morphology which shows the significant microsegregation caused by the difference in the diffusion rate between liquid and solid. 4. It is found that the surface corrosion products were mainly AgCl by X-ray diffraction results.

  • PDF

Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-bump for 3-D IC Packages (3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프 구조의 열처리에 따른 금속간 화합물 성장 거동 분석)

  • Kim, Jun-Beom;Kim, Sung-Hyuk;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • In-situ annealing tests of Cu/Ni/Au/Sn-Ag/Cu micro-bump for 3D IC package were performed in an scanning electron microscope chamber at $135-170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). The IMC growth behaviors of both $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ follow linear relationship with the square root of the annealing time, which could be understood by the dominant diffusion mechanism. Two IMC phases with slightly different compositions, that is, $(Cu,Au^a)_6Sn_5$ and $(Cu,Au^b)_6Sn_5$ formed at Cu/solder interface after bonding and grew with increased annealing time. By the way, $Cu_3Sn$ and $(Cu,Au^b)_6Sn_5$ phases formed at the interfaces between $(Cu,Ni,Au)_6Sn_5$ and Ni/Sn, respectively, and both grew with increased annealing time. The activation energies for $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ IMC growths during annealing were 0.69 and 0.84 eV, respectively, where Ni layer seems to serve as diffusion barrier for extensive Cu-Sn IMC formation which is expected to contribute to the improvement of electrical reliability of micro-bump.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Interfacial Reactions Between Au-20Sn Solder and Cu Substrate with or without ENIG plating layer (Eutectic Au-20Sn solder와 Cu/ENIG 기판과의 계면반응)

  • Jeon Hyeon-Seok;Yun Jeong-Won;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.230-232
    • /
    • 2006
  • Eutectic Au-20Sn solder has been widely used for optoelectronic packages because of fluxless soldering process and thus are particularly valuable for many applications such as biomedical, photonic, and MEMS devices that can not use any flux. Also when good joint strength, superior resistance to corrosion, whisker-free, and good thermal conductivity are demanded, eutectic Au-20Sn solder can be satisfied with above-mentions best. In this study, we tried to know the interfacial reactions between Au-20Sn solder and Cu substrate with or without ENIG plating layer In the results, Au-Cu-Sn ternary phases were formed at the Au-20Sn/Cu substrate, and Au-Ni-Sn, Au-Ni-Cu-Sn phases were formed at the Au-20Sn/ENIG substrate.

  • PDF

Effects of a Au-Cu Back Layer on the Properties of Spin Valves

  • In, Jang-Sik;Kim, Sang-Hoon;Kang, Jae-Yong;Tiwari, Ajay;Hong, Jong-Ill
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • We have studied the effect of Au-Cu back layer system ${\sim}10{\AA}$ thick on the properties of a spin valve. The back layers were Cu, Au, co-sputtered $Cu_xAu_{1-x}$, laminated $[Au/Cu]_n$. and bi-layer [Au/Cu]. When Au was added to the Cu, the resistance of the spin valve abruptly increased most likely due to impurity scattering. The GMR values were not increased significantly for all the structures. In the case of co-sputtered $Cu_xAu_{1-x}$, the changes in the resistance, ${\Delta}R$, was increased at a composition of ${\sim}Au_{0.5}Cu_{0.5}$. This increase in ${\Delta}R$ is due to increase in the resistance and not from the enhanced spin-dependent scattering. The structural analyses showed that the orthorhombic $Au_{0.5}Cu_{0.5}$ was formed in the back layer instead of the face-centered tetragonal $Au_{0.5}Cu_{0.5}$ as we expected. Thermal annealing over $400^{\circ}C$ may be required to have face-centered tetragonal in the $10{\AA}$ thick ultra-thin film. In the case of a laminated or bi-layered back layer, the properties of the spin valve were improved, which may be attributed to the increase in the mean free path of conduction electrons.

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster (Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질)

  • Na Hye Jin Na;Kyoung Chul Lee;Eun Ah Yoo;Kang Sup Chung
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.

Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites (CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선)

  • Park, Mi-Seon;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2016
  • In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in ʼn-BGA (ʼn-BGA에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.59-59
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp. : 250℃ and conveyer speed : 0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was 250℃. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn (5㎛), Cu/Ni (5㎛), and Cu/Ni/Au (5㎛/500Å) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in $\mu-BGA$ ($\mu-BGA$에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp.:$250^{\circ}C$and conveyer speed:0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was $250^{\circ}C$. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn ($5\mu\textrm{m}$), Cu/Ni ($5\mu\textrm{m}$), and Cu/Ni/Au ($5\mu\textrm{m}/500{\AA}$) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.