Browse > Article
http://dx.doi.org/10.14478/ace.2015.1117

Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites  

Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Bae, Tae-Sung (Korea Basic Science Institute (KBSI) Jeonju Center)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.2, 2016 , pp. 145-152 More about this Journal
Abstract
In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.
Keywords
electrochemical glucose biosensor; non-enzymatic system; nanocomposite; copper oxide; multi-walled carbon nanotube;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, and P. K. Patanjali, Response speed of $SnO_2$-based $H_2S$ gas sensors with CuO nanoparticles, Appl. Phys. Lett., 84, 1180-1182 (2004).   DOI
2 T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, and S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method, Electrochem. Commun., 4, 468-471 (2002).   DOI
3 Y. S. Lee and K. H. Yoon, Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites, Carbon Lett., 16, 86-92 (2015).   DOI
4 M. Y. Koo, H. C. Shin, W. -S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014).   DOI
5 T. Saito, K. Matsushige, and K. Tanake, Chemical treatment and modification of multi-walled carbon nanotubes, Physica B, 323, 280-283 (2002).   DOI
6 K. L. Chopra, Thin Film Phenomena, Wiley, New York (1969).
7 J. S. Im, J. G. Kim, T. -S. Bae, H. -R. Yu, and Y. -S. Lee, Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode, Sens. Actuators B, 158, 151-158 (2011).   DOI
8 J. Wang and W. D. Zhang, Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose, Electrochim. Acta, 56, 7510-7516 (2011).   DOI
9 H. Wei, J. J. Sun, L. Guo, X. Li, and G. N. Chen, Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode, Chem. Commun., 15, 2842-2844 (2009).
10 J. M. Marioli and T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochim. Acta., 37, 1187-1197 (1992).   DOI
11 J. S. Im, J. Yun, J. G. Kim, T. -S. Bae, and Y. -S. Lee, The effects of carbon nanotube addition and oxyfluorination on the glucose- sensing capabilities of glucose oxidase-coated carbon fiber electrodes, Appl. Surf. Sci., 258, 2219-2225 (2012).   DOI
12 M. Gougis, A. Tabet-Aoul, D. Ma, and M. Mohamedi, Laser synthesis and tailor-design of nanosized gold onto carbonnanotubes for non-enzymatic electrochemical glucose sensor, Sens. Actuators B, 193, 363-369 (2014).   DOI
13 R. R. Adzic, M. W. Hsiao, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces, J. Electroanal. Chem. Interfacial. Electrochem., 260, 475-485 (1989).   DOI
14 J. E. Oliveira, M. L. H. Capparelli, E. S. Medeiros, and V. Zucolotto, Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors, Biosensors, 2, 70-82 (2012).   DOI
15 L. C. Jiang and W. D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 25, 1402-1407 (2010).   DOI
16 T. Kawasaki, H. Akanuma, and T. Y. Yamanouchi, Increased Fructose Concentrations in Blood and Urine in Patients With Diabetes, Diab. Care, 25, 353-357 (2002).   DOI
17 X. Jiang, Y. Wu, X. Mao, X. Cui, and L. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite, Sens. Actuators B, 153, 158-163 (2011).   DOI
18 B. Vient, B. Panzini, M. Boucher, and J. Massicotte, Automated Enzymatic Assay for the Determination of Sucrose in Serum and Urine and Its Use as a Marker of Gastric Damage, Clin. Chem., 44, 2369-2371 (1998).
19 E. Reitz, W. Z. Jia, M. Gentile, Y. Wang, and Y. Lei, CuO nanospheres based nonenzymatic glucose sensor, Electroanalysis, 20, 2482-2486 (2008).   DOI
20 S. Hajar, K. Mahdi, and A. E. Ali, Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode, Chinese J. Catal., 34, 1208-1215 (2013).   DOI
21 S. K. Vashist, D. Zheng, K. A. Rubeaan, J. H. T. Luong, and F. S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: A review, Anal. Chim. Acta, 703, 124-136 (2011).   DOI
22 X. Lv, X. Wang, D. Huang, C. Niu, and G. Zeng, Q. Niu, Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose, Talanta, 129, 20-25, (2014).   DOI
23 W. Zhang, D. Ma, and J. Du, Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose, Talanta, 120, 362-367 (2014).   DOI
24 C. Wang and H. Huang, Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+-tripropylamine system, Anal. Chim. Acta, 498, 61-68 (2003).   DOI
25 X. Tian, S. Lian, L. Zhao, X. Chen, Z. Huang, and X. Chen, A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode, J. Solid State Electrochem., 18, 2375-2382 (2014).   DOI
26 S. Park, H. Boo, and T. D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta, 556, 46-57 (2006).   DOI
27 Y. -W. Hsu, T. -K. Hsu, C. -L. Sun, Y. -T. Nien, N. -W. Pu, and M. -D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta, 82, 152-157 (2012).   DOI
28 R. K. Shervedani, A. H. Mehrjardi, and N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor, Bioelectrochemistry, 69, 201-208 (2006).   DOI
29 L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin, Amperometric glucose biosensor based on silver nanowires and glucose oxidase, Sens. Actuators B, 176, 9-14 (2013).   DOI
30 F. Kong, S. Gu, W. Li, T. Chen, Q. Xu, and W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination, Biosens. Bioelectron., 56, 77-82 (2014).   DOI
31 K. -C. Lin, Y. -C. Lin, and S. -M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles, Electrochim. Acta, 96, 164-172 (2013).   DOI
32 L. Luo, L. Zhu, and Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode, Bioelectrochemistry, 88, 156-163 (2012).   DOI
33 Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, 133, 126-232 (2008).   DOI
34 S. A. Kumar, H. W. Cheng, S. M. Chen, and S. F. Wang, Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing, Mater. Sci. Eng. C, 30, 86-91 (2010).   DOI
35 C. X. Wang, L. W. Yin, L. Y. Zhang, and R. Gao, Ti/$TiO_2$ Nanotube Array/Ni Composite Electrodes for Nonenzymatic Amperometric Glucose Sensing, J. Phys. Chem. C, 114, 4408-4413 (2010).   DOI
36 X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, and Y. Soejima, Observation of Charge Stripes in Cupric Oxide, Phys. Rev. Lett., 85, 5170-5173 (2000).   DOI
37 J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen, and S. H. Yang, Temperature dependence of field emission from cupric oxide nanobelt films, Appl. Phys. Lett., 83, 746-748 (2003).   DOI