Browse > Article
http://dx.doi.org/10.5012/jkcs.2003.47.4.315

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster  

Na Hye Jin Na (SungKyunKwan Univ. Basic Science Research Institute)
Kyoung Chul Lee (SungKyunKwan Univ. Basic Science Research Institute)
Eun Ah Yoo (SungShin Women Univ. Depart. of Chemistry)
Kang Sup Chung (Korea Institute of Geoscience and Mineral Resources)
Publication Information
Abstract
In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.
Keywords
Au/Ag; Au/Cu; Alloy Nanocluster;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ I. Lisiecki;M. P. Pileni ] / J. Am. Chem. Soc.   DOI   ScienceOn
2 T. S. Ahmadi; S. L. Logunov; M. A. El-Sayed, J. Phys. Chem., 1996, 100, 8053.   DOI   ScienceOn
3 M. M. Alvarez; J. T. Khoury; T. G. Schaaff; N. M. Shafigullin; I. Vezmar; R. L. Whetten, J. Phys. Chem., 1997, 101, 3706.   DOI
4 S. L. Logunov; T. S. Ahmadi; M. A. El-Sayed; J. T. Khoury; R. L. Whetten, J. Phys. Chem. B, 1997, 101, 3713.   DOI   ScienceOn
5 I. Tanahashi; Y. Manabe; T. Tohda; S. Sasaki; A. Nakamura, Appl. Phys., 1996, 79, 1244.   DOI
6 G. L. Hornyak; C. J. Patrissi; C. R. Martin, J. Phys. Chem. B, 1997, 101, 1548.   DOI
7 G. De; L. Tapfer; M. Catalano; G. Battaglin; F. Caccavale; F. Gonella; P. Mazzoldi; R. F. Jr. Haglund, Appl. Phys. Lett., 1996, 68, 3820.   DOI   ScienceOn
8 H. B. Liao; R. F. Xiao; J. S. Fu; P. Yu; G. K. L. Wong; S. Ping, Appl. Phys. Chem., 1997, 70, 1.
9 D. Richard; P. Roussignol; C. Flytzanis, Opt. Lett., 1985, 10, 511.   DOI
10 M. T. Reetz; S. A. Quaiser, Angew. Chem., 1995, 34(20), 2240.   DOI   ScienceOn
11 I. Lisiecki; M. P. Pileni, J. Am. Chem. Soc., 1993, 115, 3887.   DOI   ScienceOn
12 P. Mulvaney; M. Giersig;A. Henglein, J. Phys. Chem., 1992, 96, 10419.   DOI
13 C. Fan; L. Jiang, Langmuir, 1997, 13, 3059.   DOI
14 C. Sangregorsio, P. Bagliou, Langmuir, 1996, 12, 5800.   DOI   ScienceOn
15 J. S. Faulkner; Y. Wang; G. M. Stocks, Phys. Lett., 1998, 81, 1905.   DOI   ScienceOn
16 K. Ripken, Z. Phys., 1972, 250, 228.   DOI
17 M. Schluter, Z. Phys., 1972, 250, 87.   DOI   ScienceOn
18 G. C. Papavassiliou, J. Phys. F: Met. Phys., 1976, 6, 2103.   DOI
19 A. Henglein; M. Giersig, J. Phys. Chem., 1994, 98, 6931.   DOI   ScienceOn
20 J. A. Creighton; D. G. Eadon, J. Chem. Soc. Faraday Trans., 1991, 87, 3881.   DOI
21 T. Dutton; B. Van Woneterghem; S. Saltiel; N. V. Chestony; P. M. Rentzepis; T. P. Shen; D. Rogovin, J. Phys. Chem., 1990, 94, 1100.   DOI
22 P. Barnickel; A. Wokaun; W. Sagerand; H. F. Eiche, J. Colloid Interface Sci., 1992, 148, 80.   DOI
23 R. Lamber; S. Wetjen; G. Schulz-Ekloff; A. Baalmann, J. Phys. Chem., 1995, 99, 13834.   DOI   ScienceOn
24 P. Mulvaney, Langmuir, 1996, 12, 788.   DOI   ScienceOn
25 J. Marignier; J. Balloni; M. Delcourt; J. Chevalier, Nature, 1985, 317, 344.   DOI   ScienceOn
26 L. M. Liz-Marzan; Luis; A. P. Philipse, J. Phys. Chem., 1995, 41, 15120.   DOI
27 E. J. Heilweil; R. M. Hochestrasser, J. Chem. Phys., 1985, 82, 4762.   DOI
28 F. Hache; D. Richard; C. Flytzanis; K. Kreibig, Appl. Phys. A, 1988, 47, 347.   DOI
29 M. J. Bloemer; J. W. Haus; P. R. Ashley, J. Opt. Soc. Am. B, 1990, 7, 790.   DOI
30 R. F. Haglund; Jr. L. Yang; R. H. Magruder III; J. E. Witting; K. Berker; R. A. Zuhr, Opt. Lett., 1993, 18, 373.   DOI   ScienceOn
31 K. Kadono; T. Sakaguchi; M. Miya; J. Matsuoka; T. Fukumi, J. Mater. Sci.: Mater. Electron, 1993, 4, 59.   DOI   ScienceOn