• 제목/요약/키워드: Atomic layer deposition(ALD)

검색결과 396건 처리시간 0.029초

UV-enhanced Atomic Layer Deposition of Al2O3 Thin Film

  • 윤관혁;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.256-256
    • /
    • 2011
  • We have deposited Al2O3 thin films on Si substrates at room temperature by UV-enhanced atomic layer deposition using trimethylaluminum (TMA) and H2O as precursors with UV light. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In many cases, the surface reactions of the atomic layer deposition are not completed at low temperature. In this experiment, the surface reactions were found to be self-limiting and complementary enough to yield uniform Al2O3 thin films by using UV irradiation at room temperature. The UV light was very effective to obtain the high quality Al2O3 thin films with defectless.

  • PDF

OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구 (Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED)

  • 조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

결정질 실리콘 태양전지 적용을 위해 PA-ALD를 이용한 $Al_2O_3$ 최적화 연구

  • 송세영;강민구;송희은;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.246-246
    • /
    • 2013
  • Atomic layer deposition (ALD)에 의해 증착된 알루미늄 산화막($Al_2O_3$)은 고효율 결정질 실리콘 태양전지를 위한 우수한 패시베이션 효과를 보인다. $Al_2O_3$은 고정 음전하를 가지고 있기때문에 p-형 태양전지 후면에서 field effect passivation에 의한 효과적인 표면 패시베이션을 형성한다. 하지만 ALD에 의한 $Al_2O_3$ 증착은 긴 공정시간이 필요하다. 이는 기존의 태양전지 산업에 적합하지 않다. 본 논문에서는 공정 시간의 단축을 위해 plasma-assisted atomic layer deposition (PA-ALD) 기술을 사용함으로서 $Al_2O_3$을 증착했다. PA-ALD 기술은 trimethyaluminum (TMA)와 plasma 분위기에서의 $O_2$ 가스를 사용하여 표면 반응을 한다. $Al_2O_3$ 층의 특성을 최적화하기 위해 증착 온도를 $150{\sim}250^{\circ}C$의 범위에서 가변하고, 열처리 온도와 시간을 변화하였다. 결과적으로, 실리콘 웨이퍼를 이용하여 $1250^{\circ}C$의 공정온도에서 증착한 $Al_2O_3$$400^{\circ}C$에서 10분 동안의 열처리 온도와 시간에서 1,610 ${\mu}s$의 최고의 유효 반송자 수명을 보였다.

  • PDF

원자막증착법(ALD) SnO2 촉매를 적용한 AlGaN/GaN 이종접합 트랜지스터 NO2 가스센서 (NO2 gas sensor using an AlGaN/GaN Heterostructure FET with SnO2 catalyst deposited by ALD technique)

  • 양수혁;김형탁
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1117-1121
    • /
    • 2020
  • 본 연구에서는, 원자막증착법(ALD) 공정으로 증착된 SnO2 촉매를 AlGaN/GaN 이종접합 FET에 적용하여 NO2 가스 검출이 가능한 것을 확인하였다. AlGaN/GaN-on-si 플랫폼에서 제작 된 HFET 센서로 NO2 100 ppm에 대하여 In-situ SiN이 있는 소자와 없는 소자가 각각 100 ℃, 200 ℃에서 10.1% 및 17.7%, 5.5% 및 38%의 감지성능을 확인하였다.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • 한동석;문대용;권태석;김웅선;황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Theoretical Calculation and Experimental Verification of the Hf/Al Concentration Ratio in Nano-mixed $Hf_xAl_yO_z$ Films Prepared by Atomic Layer Deposition

  • Kil, Deok-Sin;Yeom, Seung-Jin;Hong, Kwon;Roh, Jae-Sung;Sohn, Hyun-Cheol;Kim, Jin-Woong;Park, Sung-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.120-126
    • /
    • 2005
  • We have proposed a characteristic method to estimate real composition when multi component oxide films are deposited by ALD. Final atomic concentration ratio was theoretically calculated from the film densities and growth rates for $HfO_2$ and $Al_2O_3$ using ALD processed HfxAhOz mms.W e have transformed initial source feeding ratio during deposition to fins] atomic ratio in $Hf_xAl_yO_z$ films through thickness factors ($R_{HFO_2}$ ami $R_{Al_2O_3}$) ami concentration factor(C) defined in our experiments. Initial source feeding ratio could be transformed into the thickness ratio by each thickness factor. Final atomic ratio was calculated from thickness ratio by concentration factor. It has been successfully confirmed that the predicted atomic ratio was in good agreement with the actual measured value by ICP-MS analysis.

Atomic Layer Deposition of $Sb_2S_3$ Thin Films on Mesoporous $TiO_2$

  • 한규석;정진원;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2013
  • The antimony sulfide ($Sb_2S_3$) thin films were deposited using the gas phase method which known as atomic layer deposition (ALD) on mesoporous micro-films. Tris (dimethylamido) antimony (III[$(Me_2N)_3Sb$] and hydrogensulfide ($H_2S$) were used as precursors to deposit $Sb_2S_3$. Self-terminating nature of $(Me_2N)_3Sb$ and $H_2S$ reaction were demonstrated by growth rate saturation versus precursors dosing time. Absorption spectra and extinction coefficient were investigated by UV-VIS spectroscopy. Scanning electron microscopic analysis and X-ray photoelectron spectroscopy (XPS) depth profile were employed to determine the conformal deposition.

  • PDF