Browse > Article
http://dx.doi.org/10.14478/ace.2022.1020

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization  

Chung, Sangho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Bong, Sungyool (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Lee, Jaeyoung (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 315-321 More about this Journal
Abstract
We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.
Keywords
Vanadium pentoxide; Carbon electrode; Atomic layer deposition; Capacitance deionization; Activated carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Y. Yin, M. K. Aroua, and W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52, 403-415 (2007).   DOI
2 Y. Li, Z. Huang, P. K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, and Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery, Nano Energy, 60, 752-759 (2019).   DOI
3 X. Liu, J. Zeng, H. Yang, K. Zhou, and D. Pan, V2O5-Based nanomaterials: synthesis and their applications, RSC Adv., 8, 4014-4031 (2018).   DOI
4 Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries, Adv. Mater., 22, 2172-2176 (2010).   DOI
5 Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition, J. Electrochem. Soc., 157, A75 (2009).   DOI
6 Y. Wang, L. Zhang, Y. Wu, S. Xu, and J. Wang, Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology, Desalination, 354, 62-67 (2014).   DOI
7 X. Song, H. Liu, L. Cheng, and Y. Qu, Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption, Desalination, 255, 78-83 (2010).   DOI
8 B. Jeon, C. Ko, A. C. T. van Duin, and S. Ramanathan, Chemical stability and surface stoichiometry of vanadium oxide phases studied by reactive molecular dynamics simulations, Surf. Sci., 606, 516-522 (2012).   DOI
9 M. J. Young, A. M. Holder, S. M. George, and C. B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27, 1172-1180 (2015).   DOI
10 D. M. Piper, J. J. Travis, M. Young, S.-B. Son, S. C. Kim, K. H. Oh, S. M. George, C. Ban, and S.-H. Lee, Reversible high-capacity si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition, Adv. Mater., 26, 1596- 1601 (2014).   DOI
11 B. A. Fellman, M. Atieh, and E. N. Wang, Carbon-based electric double layer capacitors for water desalination, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting Issue PARTS A AND B, 275-279 (2010).
12 S. Chung, J. K. Lee, J. D. Ocon, Y.-I. Son, and J. Lee, Carbon electrodes in capacitive deionization process, Appl. Chem. Eng., 25, 346-351 (2014).   DOI
13 Y. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S.-H. Lee, A. Genc, L. Pullan, J. Liu, S. X. Mao, J.-G. Zhang, C. Ban, and C. Wang, In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries, ACS Nano, 8, 11816-11823 (2014).   DOI
14 Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, and J. Fang, Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures, J. Phys. Chem. C, 115, 17068-17076 (2011).   DOI
15 K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, and C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206, 86-91 (2007).   DOI
16 J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice, Sep. Purif. Technol,. 207, 291-320 (2018).   DOI
17 Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228, 10-29 (2008).   DOI
18 M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water, Comparison to present desalination practices: Will it compete? Electrochim. Acta, 55, 3845-3856 (2010).   DOI
19 J. Farmer, D. Fix, and G. Mack, Capacitive deionization of water: An innovative new process, Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation 2, 1215-1220 (1995).
20 M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, Production of activated carbon from coconut shell: Optimization using response surface methodology, Bioresour. Technol., 99, 4887-4895 (2008).   DOI
21 A. L. Ahmad, M. M. Loh, and J. A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption, Dyes Pigm., 75, 263-272 (2007).   DOI
22 H. Teng, T.-S. Yeh, and L.-Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon, 36, 1387-1395 (1998).   DOI
23 S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013).   DOI
24 C. Nie, L. Pan, Y. Liu, H. Li, T. Chen, T. Lu, and Z. Sun, Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization, Electrochim. Acta, 66, 106-109 (2012).   DOI
25 H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. Phys., 165, 211-233 (1853).   DOI
26 L. Khezami, A. Chetouani, B. Taouk, and R. Capart, Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan, Powder Technol., 157, 48-56 (2005).   DOI
27 H. Li, L. Zou, L. Pan, and Z. Sun, Novel Graphene-Like Electrodes for Capacitive Deionization, Environ. Sci. Technol., 44, 8692-8697 (2010).   DOI
28 H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, Electrosorption behavior of graphene in NaCl solutions, J. Mater. Chem., 19, 6773-6779 (2009).   DOI
29 W.-Y. Huang, J. Wang, Y.-M. Liu, Q.-S. Zheng, and C.-Y. Li, Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells, Eur. J. Pharmacol., 723, 67-72 (2014).   DOI
30 L. Wang, M. Wang, Z.-H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21, 18295-18299 (2011).   DOI
31 Y. Wang, R. Wang, S. Xu, Q. Liu, and J. Wang, Polypyrrole/polyaniline composites with enhanced performance for capacitive deionization, Desalin. Water Treat., 54, 3248-3256 (2015).   DOI
32 H. Li, L. Zou, L. Pan, and Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 75, 8-14 (2010).   DOI
33 P. Xu, J. E. Drewes, D. Heil, and G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42, 2605-2617 (2008).   DOI
34 R. Kumar, S. Sen Gupta, S. Katiyar, V. K. Raman, S. K. Varigala, T. Pradeep, and A. Sharma, Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization, Carbon, 99, 375-383 (2016).   DOI