Browse > Article

Theoretical Calculation and Experimental Verification of the Hf/Al Concentration Ratio in Nano-mixed $Hf_xAl_yO_z$ Films Prepared by Atomic Layer Deposition  

Kil, Deok-Sin (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Yeom, Seung-Jin (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Hong, Kwon (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Roh, Jae-Sung (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Sohn, Hyun-Cheol (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Kim, Jin-Woong (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Park, Sung-Wook (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.5, no.2, 2005 , pp. 120-126 More about this Journal
Abstract
We have proposed a characteristic method to estimate real composition when multi component oxide films are deposited by ALD. Final atomic concentration ratio was theoretically calculated from the film densities and growth rates for $HfO_2$ and $Al_2O_3$ using ALD processed HfxAhOz mms.W e have transformed initial source feeding ratio during deposition to fins] atomic ratio in $Hf_xAl_yO_z$ films through thickness factors ($R_{HFO_2}$ ami $R_{Al_2O_3}$) ami concentration factor(C) defined in our experiments. Initial source feeding ratio could be transformed into the thickness ratio by each thickness factor. Final atomic ratio was calculated from thickness ratio by concentration factor. It has been successfully confirmed that the predicted atomic ratio was in good agreement with the actual measured value by ICP-MS analysis.
Keywords
Atomic Layer Deposition; $HfO_2$; $Al_2O_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Hausmann, J. Becker, S. Wang and Roy Gordon, Science 298, 402(2002)   DOI   ScienceOn
2 R. Gordon, D. Hausmann, E. Kim and J. Shepard, Chem. Vap. Deposition, Vol. 9, No.2, 73(2003)   DOI   ScienceOn
3 M. D. Groner, J. W. Elam, F. H. Fabreguette, and S.M. George, Thin Solid Films 413, 186(2002)   DOI   ScienceOn
4 K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, Thin Solid Films 260, 135(1995)   DOI   ScienceOn
5 H. B. Park, M. Cho, J. Park, S.W. Lee, and C. S. Hwang, Journal Applied Physics, Vol. 94, No.5, 3641(2003)   DOI   ScienceOn
6 W. Nam, and S. W. Rhee, Chem. Vap. Deposition, 10, No.4,201(2004)   DOI   ScienceOn
7 W. Nam, and S. W. Rhee, Electrochem. Solid-state Lett., Vol.7(4), C55(2004)   DOI   ScienceOn
8 D. S. Kil et al., VLSI Tech. Dig.(2004), p.126-127
9 D. S. Kil, J M. Lee and J. S. Roh, Chem. Vap. Deposition, Vol. 8, No.2, 73(2002)   DOI
10 W.F.A. Besling, E. Young, T. Conard, C. Zhao, R. Carter. W. Vandervorst, M. Caymax, S. De. Gendt, M. Heyns, J. Maes, M. Tuominen, and S. Haukka, Journal of Non-Cystalline Solids 303, 123(2002)   DOI   ScienceOn
11 Y. J. Lee, and S. W. Kang, J. Vac. Sci. Techno. A 21(5), L13-L15(2003)   DOI   ScienceOn