Acknowledgement
This work was also supported by the GIST Research Institute (GRI) grant funded by the GIST in 2022.
References
- J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice, Sep. Purif. Technol,. 207, 291-320 (2018). https://doi.org/10.1016/j.seppur.2018.06.046
- Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
- M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water, Comparison to present desalination practices: Will it compete? Electrochim. Acta, 55, 3845-3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
- S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
- H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche, Ann. Phys., 165, 211-233 (1853). https://doi.org/10.1002/andp.18531650603
- B. A. Fellman, M. Atieh, and E. N. Wang, Carbon-based electric double layer capacitors for water desalination, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting Issue PARTS A AND B, 275-279 (2010).
- J. Farmer, D. Fix, and G. Mack, Capacitive deionization of water: An innovative new process, Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation 2, 1215-1220 (1995).
- L. Khezami, A. Chetouani, B. Taouk, and R. Capart, Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan, Powder Technol., 157, 48-56 (2005). https://doi.org/10.1016/j.powtec.2005.05.009
- M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, Production of activated carbon from coconut shell: Optimization using response surface methodology, Bioresour. Technol., 99, 4887-4895 (2008). https://doi.org/10.1016/j.biortech.2007.09.042
- A. L. Ahmad, M. M. Loh, and J. A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption, Dyes Pigm., 75, 263-272 (2007). https://doi.org/10.1016/j.dyepig.2006.05.034
- H. Teng, T.-S. Yeh, and L.-Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon, 36, 1387-1395 (1998). https://doi.org/10.1016/S0008-6223(98)00127-4
- R. Kumar, S. Sen Gupta, S. Katiyar, V. K. Raman, S. K. Varigala, T. Pradeep, and A. Sharma, Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization, Carbon, 99, 375-383 (2016). https://doi.org/10.1016/j.carbon.2015.12.004
- P. Xu, J. E. Drewes, D. Heil, and G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42, 2605-2617 (2008). https://doi.org/10.1016/j.watres.2008.01.011
- H. Li, L. Zou, L. Pan, and Z. Sun, Novel Graphene-Like Electrodes for Capacitive Deionization, Environ. Sci. Technol., 44, 8692-8697 (2010). https://doi.org/10.1021/es101888j
- H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, Electrosorption behavior of graphene in NaCl solutions, J. Mater. Chem., 19, 6773-6779 (2009). https://doi.org/10.1039/b907703k
- H. Li, L. Zou, L. Pan, and Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 75, 8-14 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
- L. Wang, M. Wang, Z.-H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21, 18295-18299 (2011). https://doi.org/10.1039/c1jm13105b
- C. Nie, L. Pan, Y. Liu, H. Li, T. Chen, T. Lu, and Z. Sun, Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization, Electrochim. Acta, 66, 106-109 (2012). https://doi.org/10.1016/j.electacta.2012.01.064
- Y. Wang, L. Zhang, Y. Wu, S. Xu, and J. Wang, Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology, Desalination, 354, 62-67 (2014). https://doi.org/10.1016/j.desal.2014.09.021
- Y. Wang, R. Wang, S. Xu, Q. Liu, and J. Wang, Polypyrrole/polyaniline composites with enhanced performance for capacitive deionization, Desalin. Water Treat., 54, 3248-3256 (2015). https://doi.org/10.1080/19443994.2014.907748
- W.-Y. Huang, J. Wang, Y.-M. Liu, Q.-S. Zheng, and C.-Y. Li, Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells, Eur. J. Pharmacol., 723, 67-72 (2014). https://doi.org/10.1016/j.ejphar.2013.11.041
- X. Song, H. Liu, L. Cheng, and Y. Qu, Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption, Desalination, 255, 78-83 (2010). https://doi.org/10.1016/j.desal.2010.01.011
- C. Y. Yin, M. K. Aroua, and W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52, 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
- Y. Li, Z. Huang, P. K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, and Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery, Nano Energy, 60, 752-759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009
- B. Jeon, C. Ko, A. C. T. van Duin, and S. Ramanathan, Chemical stability and surface stoichiometry of vanadium oxide phases studied by reactive molecular dynamics simulations, Surf. Sci., 606, 516-522 (2012). https://doi.org/10.1016/j.susc.2011.11.021
- X. Liu, J. Zeng, H. Yang, K. Zhou, and D. Pan, V2O5-Based nanomaterials: synthesis and their applications, RSC Adv., 8, 4014-4031 (2018). https://doi.org/10.1039/C7RA12523B
- Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries, Adv. Mater., 22, 2172-2176 (2010). https://doi.org/10.1002/adma.200903951
- Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition, J. Electrochem. Soc., 157, A75 (2009). https://doi.org/10.1149/1.3258274
- D. M. Piper, J. J. Travis, M. Young, S.-B. Son, S. C. Kim, K. H. Oh, S. M. George, C. Ban, and S.-H. Lee, Reversible high-capacity si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition, Adv. Mater., 26, 1596- 1601 (2014). https://doi.org/10.1002/adma.201304714
- Y. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S.-H. Lee, A. Genc, L. Pullan, J. Liu, S. X. Mao, J.-G. Zhang, C. Ban, and C. Wang, In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries, ACS Nano, 8, 11816-11823 (2014). https://doi.org/10.1021/nn505523c
- M. J. Young, A. M. Holder, S. M. George, and C. B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27, 1172-1180 (2015). https://doi.org/10.1021/cm503544e
- Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, and J. Fang, Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures, J. Phys. Chem. C, 115, 17068-17076 (2011). https://doi.org/10.1021/jp2047618
- K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, and C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206, 86-91 (2007). https://doi.org/10.1016/j.desal.2006.04.051
- S. Chung, J. K. Lee, J. D. Ocon, Y.-I. Son, and J. Lee, Carbon electrodes in capacitive deionization process, Appl. Chem. Eng., 25, 346-351 (2014). https://doi.org/10.14478/ACE.2014.1080