• Title/Summary/Keyword: Associated flow rule

검색결과 66건 처리시간 0.02초

사질토 지반에서 선단지지말뚝의 P-S 특성 (P-S Characteristics for End-bearing Pile in Granular Material)

  • 이용주
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.85-91
    • /
    • 2005
  • 본 논문에서는 실내모형실험 및 유한요소 프로그램인 CRISP을 이용하여 사질토 지반에 근입되어있는 선단지지 말뚝의 하중-침하(P-S) 관계를 규명하였다. 선단지지말뚝의 효과를 유한요소 해석에서 모사하기 위하여 몇 가지 형태의 인터페이스 요소들(slip elements)을 말뚝 주변 및 선단에 도입하였다. 비관련 소성흐름 법칙의 정도, 즉 지반강도 정수인 내부마찰각과 팽창각의 차이 정도를 고려한 Mo-Coulomb 지반 모델에 있어서, 인터페이스 요소들이 포함된 선단지지말뚝은 내부마찰각과 팽창각의 차이가 유한요소 해의 수렴에 매우 중요한 역할을 하는 것으로 나타났다. 한편, 이와는 대조적으로 말뚝 주변에 적용한 인터페이스 요소 대신 Roller로 모사된 선단지지말뚝의 유한요소 해는 비관련 소성흐름 법칙의 정도에 대해서 영향을 받지 않고 수렴되는 것으로 나타났다.

재료비선형성을 고려한 R/C 구조물의 유한요소해석 (Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures)

  • 최창근;곽효경
    • 대한토목학회논문집
    • /
    • 제9권3호
    • /
    • pp.31-38
    • /
    • 1989
  • 본 논문은 점진적 증가하중에 의한 철근 콘크리트 구조물의 전반적인 거동을 고찰하기 위한 것으로써 콘크리트의 인장균열, 철근 및 콘크리트의 응력-변형을 관계의 비선형성을 고려하였다. 콘크리트는 인장영역에서는 선형 탄성체로 가정하였으며 압축영역에서 탄소성체로 가정하였다. 압축영역의 콘크리트 거동을 파악함에 있어 Kupfer가 제안한 파괴표면 식을 항복한계로 사용 하였으며 associated flow rule에 의해 거동한다고 가정하였다. 철근은 일축응력을 받는 선형의 변형경화 재료로 모델링하였다. 콘크리트의 균열 발생시 인접한 균열 사이의 tension stiffening effect를 고려하였으며 콘크리트 구조물의 해석시 나타나는 유한요소의 크기에 따른 수치해석 오차를 콘크리트 인장부분의 변형연화 영역의 기울기를 보정함으로써 감소시키는 에너지 개념에 의한 ${\epsilon}_0$의 결정 모델 제안하였다.

  • PDF

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

전단보강된 철근 콘크리트 보의 3차원 거동해석 (Three-Dimensional Nonlinear Analysis of Reinforced Concrete Beam with Shear Reinforcements)

  • 주영태;정헌주;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.431-436
    • /
    • 2001
  • Lateral confining effect due to the existence of the shear reinforcements in R.C. beam is investigate in a numerical way. For the purpose, a three dimensional constitutive model of concrete is developed based on the elasto-plasticity using non-associated plastic flow rule to control the excessive inelastic dilatancy. The plastic flow direction is determined based on the associated plastic flow direction in a way to adjust the directional angle between the two normal vector components along the hydrostatic and deviatoric axis in a meridian plane in which the loading function prescribed. The current formulation is combined with the four parameter elasto-plastic triaxial concrete model recently developed. The resulting elasto-plastic triaxial concrete model predicts the fundamental behaviors of concrete under different confining levels and the 4-points flexural test of a beam with shear reinforcements, compares with the experimental results.

  • PDF

탄.소성구성식에 의한 점토지반의 거동해석 (I) -Lade의 모델, 입방체 삼축시험 및 토질매개변수 결정- (A Behavior of Clayey Foundation Using Elasto-plastic Constitutive Model - On the Lade's Model, Cubical Triaxial Test and the Determination of Soil Parameters-)

  • 이문수;이광동;오재화
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.106-118
    • /
    • 1993
  • The purpose of this study is to develop a multireservoir water balance model which may be used to evaluate rural water demands such as agricultural water, domestic water, industrial water and livestock water and to determine effective storage of reservoir. The model was verified to compare the observed reservoir release data with the simulated reservoir release data of the existing Munsan and Dongbu reservoirs located in the Gisan rural district for 3 years('87~'89). For model application, the effective storages of existing reservoirs(Munsan & Dongbu) were evaluated for 10-year frequency drought and that of newly planned reservoirs(Kumbok & Kudong) were determined for 10-year frequency drought. In addition, the behavior of effective storages for existing reservoirs were analyzed in the case of introducing new reservoirs in the existing system.

  • PDF

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

Kinematics of the Nonsteady Axi-symmetric Ideal Plastic Flow Process

  • Alexandrov, S.;Lee, W.;Chung, K.
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.209-212
    • /
    • 2004
  • A nonsteady axi-symmetric ideal flow solution is obtained here. It is based on the rigid perfect-plastic constitutive law with the Tresca yield condition and its associated flow rule. The process is to deform a circular solid disk into a spherical shell of prescribed geometry. It is assumed that there are no rigid zones and friction stresses. The solution obtained provides the distribution of kinematic variables and involves one undetermined function of the time. This function can be in general found by superimposing an optimality criterion.

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

유한요소법을 이용한 자동차 패널의 성형 해석 (Simulation of Stamping of an Automotive Panel using a Finite Element Method)

  • 이종길;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF