Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.2.189

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels  

Ebrahimi, Tayebeh (Department of Mechanical Engineering, Yasouj University)
Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University)
Jahankohan, Hamid (Department of Mechanical Engineering, Yasouj University)
Hadi, Amin (Cellular and Molecular Research Center, School of Medicine, Yasuj University of Medical Sciences)
Publication Information
Steel and Composite Structures / v.38, no.2, 2021 , pp. 189-211 More about this Journal
Abstract
An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.
Keywords
thermoelastoplastic; thick cylinder; pressure vessel; rotating; Functionally Graded Material (FGM); Linearly hardening;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using biHelmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.   DOI
2 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.   DOI
3 Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.   DOI
4 Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.   DOI
5 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), Article Number: 1750086.
6 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.   DOI
7 Kashkoli, M., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory", J. Mech., 33(4), 461-474.   DOI
8 Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349.   DOI
9 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), Article Number: 1850008. https://doi.org/10.1142/S1758825118500084.   DOI
10 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2019), "Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel", Steel Compos. Struct., 32(6), 701-715. https://doi.org/10.12989/scs.2019.32.6.701.   DOI
11 Koizumi, M. (1993), The concept of FGM.
12 Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001.   DOI
13 Goodarzi, M., Bahrami, M.N. and Tavaf, V. (2017), "Refined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model", J. Comput. Appl. Mech., 48(1), 123-136. 10.22059/JCAMECH.2017.236217.155.   DOI
14 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004.   DOI
15 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028.   DOI
16 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mechanica. 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z.   DOI
17 Ghayesh, M.H. and Farajpour, A. (2019), "Vibrations of shear deformable FG viscoelastic microbeams", Microsystem Technologies, 25(4), 1387-1400. https://doi.org/10.1007/s00542-018-4184-8.   DOI
18 Ghayesh, M.H., Farajpour, A. and Farokhi, H. (2019), "Asymmetric Oscillations of AFG Microscale Nonuniform Deformable Timoshenko Beams", Vibration. 2(2), 201-221. https://doi.org/10.3390/vibration2020013.   DOI
19 Hadi, A., Nejad, M.Z. and Hosseini, M. (2018), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004.   DOI
20 Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663.   DOI
21 Heydari, A. (2019), "Elasto-Plastic Analysis of Cylindrical Vessel with Arbitrary Material Gradation Subjected to Thermo-Mechanical Loading Via DTM", Arabian J. Sci. Eng., 1-17. https://doi.org/10.1007/s13369-019-03910-x.   DOI
22 Horgan, C. and Chan, A. (1999), "The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials", J. Elasticity. 55(1), 43-59. https://doi.org/10.1023/A:1007625401963.   DOI
23 Hosseini, M., Shishesaz, M. and Hadi, A. (2019), "Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness", Thin-Wall. Struct., 134 508-523. https://doi.org/10.1016/j.tws.2018.10.030.   DOI
24 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005.   DOI
25 Hosseini, M., Shishesaz, M., Tahan, K.N. and Hadi, A. (2016), "Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials", Int. J. Eng. Sci., 109 29-53. https://doi.org/10.1016/j.ijengsci.2016.09.002.   DOI
26 Jabbari, M., Ghannad, M. and Nejad, M.Z. (2016), "Effect of thickness profile and FG function on rotating disks under thermal and mechanical loading", J. Mechanics. 32(1), 35-46. https://doi.org/10.1017/jmech.2015.95.   DOI
27 Jabbari, M. and Nejad, M.Z. (2020), "Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads", Australian J. Mech. Eng., 18, 108-121. https://doi.org/10.1080/14484846.2018.1481562.   DOI
28 Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011.   DOI
29 Darijani, H., Kargarnovin, M. and Naghdabadi, R. (2009), "Design of spherical vessels under steady-state thermal loading using thermo-elasto-plastic concept", Int. J. Press. Vess. Piping, 86(2-3), 143-152. https://doi.org/10.1016/j.ijpvp.2008.12.001.   DOI
30 Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007.   DOI
31 Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038.
32 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Ad. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
33 Eraslan, A. and Akis, T. (2006), "On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems", Acta Mechanica, 181(1-2), 43-63. https://doi.org/10.1007/s00707-005-0276-5.   DOI
34 Eslami, M.R., Hetnarski, R.B., Ignaczak, J., Noda, N., Sumi, N. and Tanigawa, Y. (2013), Theory of elasticity and thermal stresses, Springer
35 Figueiredo, F., Borges, L. and Rochinha, F. (2008). "Elasto‐plastic stress analysis of thick‐walled FGM pipes", AIP Conference Proceedings.
36 Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clampedclamped ends", Mechanika. 85(5), 11-18.
37 Ghannad, M., Nejad, M.Z. and Rahimi, G. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika. 79(5), 13-20.
38 Ghannad, M., Nejad, M.Z., Rahimi, G. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105.   DOI
39 Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Engineering. 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043.   DOI
40 Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98. 10.22059/JCAMECH.2017.233633.143.   DOI
41 Ahmadi, S.R., Sheikhlou, M. and Gharebagh, V.M. (2011), "Thermo-elastic/plastic semi-analytical solution of incompressible functionally graded spherical pressure vessel under thermo-mechanical loading", Acta Mechanica. 222(1-2), 161. https://doi.org/10.1007/s00707-011-0512-0.   DOI
42 Akis, T. (2009), "Elastoplastic analysis of functionally graded spherical pressure vessels", Comput. Mater. Sci., 46(2), 545-554. https://doi.org/10.1016/j.commatsci.2009.04.017.   DOI
43 Akis, T. and Eraslan, A. (2006), "The stress response and onset of yield of rotating FGM hollow shafts", Acta Mechanica. 187(1-4), 169-187. https://doi.org/10.1007/s00707-006-0374-z.   DOI
44 Akis, T. and Eraslan, A.N. (2007), "Exact solution of rotating FGM shaft problem in the elastoplastic state of stress", Archive Appl. Mech., 77(10), 745-765. https://doi.org/10.1007/s00419-007-0123-3.   DOI
45 Alikarami, S. and Parvizi, A. (2017), "Elasto-plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading", Sci. Eng Compos. Mater., 24(4), 609-620. https://doi.org/10.1515/secm-2015-0010   DOI
46 Aminipour, H., Janghorban, M. and Li, L. (2020), "Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials", Waves in Random and Complex Media, 1-45. https://doi.org/10.1080/17455030.2020.1713422.   DOI
47 Burzynski, S., Chroscielewski, J., Daszkiewicz, K. and Witkowski, W. (2018), "Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type", Compos. Part B-Eng., 154, 478-491. https://doi.org/10.1016/j.compositesb.2018.07.055.   DOI
48 Ataee, A. and Noroozi, R. (2018), "Behavioral Optimization of Pseudo-Neutral Hole in Hyperelastic Membranes Using Functionally graded Cables", J. Comput. Appl. Mech., 49(2), 282-291. 10.22059/JCAMECH.2018.268899.338.   DOI
49 Atai, A.A. and Lak, D. (2017), "Analytic solution of effect of electric field on elasto-plastic response of a functionally graded piezoelectric hollow cylinder", Int. J. Press. Vess. Piping, 155, 1-14. https://doi.org/10.1016/j.ijpvp.2017.06.007.   DOI
50 Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Design Struct. Machines, 1-18. doi: 10.1080/15397734.2020.1719507   DOI
51 Abouelregal, A. and Zenkour, A. (2019), "Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model", J. Comput. Appl. Mech.. 50(1), 148-156. 10.22059/JCAMECH.2019.277115.367.   DOI
52 Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech.. 48(1), 15-26. 10.22059/JCAMECH.2017.233643.144.   DOI
53 Damadam, M., Moheimani, R. and Dalir, H. (2018), "Bree's diagram of a functionally graded thick-walled cylinder under thermo-mechanical loading considering nonlinear kinematic hardening", Case Studies in Therm. Eng., 12, 644-654. https://doi.org/10.1016/j.csite.2018.08.004.   DOI
54 Sofiyev, A. (2019), "About an approach to the determination of the critical time of viscoelastic functionally graded cylindrical shells", Compos. Part B-Eng., 156, 156-165. https://doi.org/10.1016/j.compositesb.2018.08.073.   DOI
55 Zargaripoor, A., Daneshmehr, A., Isaac Hosseini, I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Comput. Appl. Mech., 49(1), 86-101. 10.22059/JCAMECH.2018.248906.223.   DOI
56 Shishesaz, M., Hosseini, M., Tahan, K.N. and Hadi, A. (2017), "Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory", Acta Mechanica. 228(12), 4141-4168. https://doi.org/10.1007/s00707-017-1939-8.   DOI
57 Sofiyev, A. (2018), "Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure", Compos. Part B-Eng., 144, 88-98. https://doi.org/10.1016/j.compositesb.2018.01.025.   DOI
58 Sofiyev, A., Hui, D., Haciyev, V., Erdem, H., Yuan, G., Schnack, E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. Part B-Eng., 116, 170-185. https://doi.org/10.1016/j.compositesb.2017.02.006.   DOI
59 Sofiyev, A. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054.   DOI
60 Sofiyev, A., Zerin, Z. and Kuruoglu, N. (2017), "Thermoelastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory", Compos. Part B-Eng., 108, 279-290. https://doi.org/10.1016/j.compositesb.2016.09.102.   DOI
61 Sofiyev, A.H. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060.   DOI
62 Taghizadeh, T., Nejad, M.Z. and Kashkoli, M.D. (2019), "Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness", Int. J. Appl. Mech., 11(9), https://doi.org/10.1142/S1758825119500868.   DOI
63 Tang, H., Hu, Y., Li, L. and Ling, L. (2020), "Active control for ratios of strains in functionally graded piezoelectric composites", Compos. Struct., https://doi.org/10.1016/j.compstruct.2020.111861.   DOI
64 Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.   DOI
65 Yazdani, H. and Nayebi, A. (2013), "Continuum damage mechanics analysis of thin-walled tube under cyclic bending and internal constant pressure", Int. J. Appl. Mech., 5(4), https://doi.org/10.1142/S1758825113500385.   DOI
66 Zarezadeh, E., Hosseini, V. and Hadi, A. (2020), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Design Struct. Machines, 48(4), 480-495. https://doi.org/10.1080/15397734.2019.1642766.   DOI
67 Nejad, M.Z., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. 10.22059/JCAMECH.2017.247963.220.   DOI
68 Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chinese Inst. Engineers. 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640.   DOI
69 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
70 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.   DOI
71 Ozturk, A. and Gulgec, M. (2011), "Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation", Int. J. Eng. Sci., 49(10), 1047-1061. https://doi.org/10.1016/j.ijengsci.2011.06.001.   DOI
72 Peng, X.L. and Li, X.F. (2012), "Effects of gradient on stress distribution in rotating functionally graded solid disks", J. Mech. Sci. Technol., 26(5), 1483-1492. https://doi.org/10.1007/s12206-012-0339-1.   DOI
73 Pradhan, S. and Phadikar, J. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193-213. https://doi.org/10.12989/sem.2009.33.2.193.   DOI
74 She, G.L., Ren, Y.R. and Yan, K.M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.   DOI
75 Sadrabadi, S.A., Rahimi, G., Citarella, R., Karami, J.S., Sepe, R. and Esposito, R. (2017), "Analytical solutions for yield onset achievement in FGM thick walled cylindrical tubes undergoing thermomechanical loads", Compos. Part B-Eng., 116, 211-223. https://doi.org/10.1016/j.compositesb.2017.02.023.   DOI
76 Seyyednosrati, A., Parvizi, A., Afzal, S.A. and Alimirzaloo, V. (2017), "Elasto-plastic solution for thick-walled spherical vessels with an inner FGM layer", J. Comput. Appl. Mech., 10.22059/JCAMECH.2017.239277.173.   DOI
77 She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729.   DOI
78 She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", The European Phys. J. Plus. 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5.   DOI
79 She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.   DOI
80 Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006.   DOI
81 Nejad, M.Z. and Rahimi, G. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Scientific Res. Essays. 4(3), 131-140. https://doi.org/10.5897/SRE.9000319.   DOI
82 Nejad, M.Z., Rahimi, G. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika. 77(3), 18-26.
83 Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), Article Number: 1650054. https://doi.org/10.1142/S175882511650054X.   DOI
84 Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002.   DOI
85 Mohammadi, M., Hosseini, M., Shishesaz, M., Hadi, A. and Rastgoo, A. (2019), "Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads", Eur. J. Mech.-A/Solids, 77, 103793. https://doi.org/10.1016/j.euromechsol.2019.05.008.   DOI
86 Moheimani, R. and Dalir, H. (2020), "Static and Dynamic Solutions of Functionally Graded Micro/Nanobeams under External Loads Using Non-Local Theory", Vibration. 3(2), 51-69. https://doi.org/10.3390/vibration3020006.   DOI
87 Moradi, A., Yaghootian, A., Jalalvand, M. and Ghanbarzadeh, A. (2018), "Magneto-Thermo mechanical vibration analysis of FG nanoplate embedded on Visco Pasternak foundation", J. Comput. Appl. Mech., 49(2), 395-407. 10.22059/JCAMECH.2018.261764.300.   DOI
88 Najibi, A. and Talebitooti, R. (2017), "Nonlinear transient thermoelastic analysis of a 2D-FGM thick hollow finite length cylinder", Compos. Part B-Eng., 111, 211-227. https://doi.org/10.1016/j.compositesb.2016.11.055.   DOI
89 Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B-Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022.   DOI
90 Nejad, M.Z. and Hadi, A. (2016), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9.   DOI
91 Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of EulerBernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.   DOI
92 Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.   DOI
93 Kalali, A.T., Moud, S.H. and Hassani, B. (2016), "Elasto-plastic stress analysis in rotating disks and pressure vessels made of functionally graded materials", Latin Am. J. Solid. Struct., 13(5), 819-834. https://doi.org/10.1590/1679-78252420.   DOI
94 Mahamood, R.M. and Akinlabi, E.T. (2017), Types of functionally graded materials and their areas of application, Springer
95 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026.   DOI
96 Jahromi, B.H., Nayeb-Hashemi, H. and Vaziri, A. (2012), "Elasto-plastic stresses in a functionally graded rotating disk", J. Eng. Mater. Technol., 134(2), 021004. https://doi.org/10.1115/1.4006023.   DOI
97 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.   DOI
98 Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.   DOI