• Title/Summary/Keyword: Artinian quotient

Search Result 12, Processing Time 0.029 seconds

THE ARTINIAN POINT STAR CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Kim, Young-Rock;Shin, Yong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.645-667
    • /
    • 2019
  • It has been little known when an Artinian point quotient has the strong Lefschetz property. In this paper, we find the Artinian point star configuration quotient having the strong Lefschetz property. We prove that if ${\mathbb{X}}$ is a star configuration in ${\mathbb{P}}^2$ of type s defined by forms (a-quadratic forms and (s - a)-linear forms) and ${\mathbb{Y}}$ is a star configuration in ${\mathbb{P}}^2$ of type t defined by forms (b-quadratic forms and (t - b)-linear forms) for $b=deg({\mathbb{X}})$ or $deg({\mathbb{X}})-1$, then the Artinian ring $R/(I{\mathbb_{X}}+I{\mathbb_{Y}})$ has the strong Lefschetz property. We also show that if ${\mathbb{X}}$ is a set of (n+ 1)-general points in ${\mathbb{P}}^n$, then the Artinian quotient A of a coordinate ring of ${\mathbb{X}}$ has the strong Lefschetz property.

AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Kim, Young Rock;Shin, Yong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.763-783
    • /
    • 2018
  • In this paper, we study an Artinian point-configuration quotient having the SLP. We show that an Artinian quotient of points in $\mathbb{p}^n$ has the SLP when the union of two sets of points has a specific Hilbert function. As an application, we prove that an Artinian linear star configuration quotient $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP if $\mathbb{X}$ and $\mathbb{Y}$ are linear starconfigurations in $\mathbb{p}^2$ of type s and t for $s{\geq}(^t_2)-1$ and $t{\geq}3$. We also show that an Artinian $\mathbb{k}$-configuration quotient $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP if $\mathbb{X}$ is a $\mathbb{k}$-configuration of type (1, 2) or (1, 2, 3) in $\mathbb{p}^2$, and $\mathbb{X}{\cup}\mathbb{Y}$ is a basic configuration in $\mathbb{p}^2$.

ON FUZZY QUOTIENT RINGS AND CHAIN CONDITIONS

  • Lee, Kyoung-Hee
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • We prove some characterization of rings with chain conditions in terms of fuzzy quotient rings and fuzzy ideals. We also show that a ring R is left Artinian if and only of the set of values of every fuzzy ideal on R is upper well-ordered.

  • PDF

THE ARTINIAN COMPLETE INTERSECTION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Shin, Yong-Su
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.251-260
    • /
    • 2019
  • It has been little known when an Artinian (point) quotient has the strong Lefschetz property. In this paper, we find the Artinian complete intersection quotient having the SLP. More precisely, we prove that if ${\mathbb{X}}$ is a complete intersection in ${\mathbb{P}}^2$ of type (2, 2) and ${\mathbb{Y}}$ is a finite set of points in ${\mathbb{P}}^2$ such that ${\mathbb{X}}{\cup}{\mathbb{Y}}$ is a basic configuration of type (2, a) with $a{\geq}3$ or (3, a) with a = 3, 4, 5, 6, then $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP. We also show that if ${\mathbb{X}}$ is a complete intersection in ${\mathbb{P}}^2$ of type (3, 2) and ${\mathbb{Y}}$ is a finite set of points in ${\mathbb{P}}^2$ such that ${\mathbb{X}}{\cup}{\mathbb{Y}}$ is a basic configuration of type (3, 3) or (3, 4), then $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP.

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

AN ARTINIAN RING HAVING THE STRONG LEFSCHETZ PROPERTY AND REPRESENTATION THEORY

  • Shin, Yong-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.401-415
    • /
    • 2020
  • It is well-known that if char𝕜 = 0, then an Artinian monomial complete intersection quotient 𝕜[x1, …, xn]/(x1a1, …, xnan) has the strong Lefschetz property in the narrow sense, and it is decomposed by the direct sum of irreducible 𝖘𝖑2-modules. For an Artinian ring A = 𝕜[x1, x2, x3]/(x16, x26, x36), by the Schur-Weyl duality theorem, there exist 56 trivial representations, 70 standard representations, and 20 sign representations inside A. In this paper we find an explicit basis for A, which is compatible with the S3-module structure.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.