References
-
J. Ahn & Y.S. Shin: The Minimal Free Resolution of A Star-Configuration in
${\mathbb{P}}^n$ and The Weak-Lefschetz Property. J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405 -
A.V. Geramita, T. Harima & Y.S. Shin: Some Special Configurations of Points in
${\mathbb{P}}^n$ . J. Algebra 268 (2003), no. 2, 484-518. https://doi.org/10.1016/S0021-8693(03)00118-2 -
A.V. Geramita, J.C. Migliore & S. Sabourin: On the first infinitesimal neighborhood of a linear configuration of points in
${\mathbb{P}}^2$ . J. Algebra 298 (2008), 563-611. -
Y.R. Kim & Y.S. Shin: Star-configurations in
${\mathbb{P}}^n$ and The Weak-Lefschetz Property. Communications in Algebra 44 (2016), 3853-3873. https://doi.org/10.1080/00927872.2015.1027373 - Y.R. Kim & Y.S. Shin: The Artinian Point Configuration Quotient and the Strong Lefschetz Property. J. Korean Math. Soc. 55 (2018), no. 4, 763-783. https://doi.org/10.4134/JKMS.J170035
- Y.R. Kim & Y.S. Shin: The Artinian Point Star Configuration Quotient and the Strong Lefschetz Property. In prepartation.
-
J.P. Park & Y.S. Shin: The Minimal Free Resolution of A Star-configuration in
${\mathbb{P}}^n$ . J. Pure Appl. Algebra 219 (2015), 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026 -
Y.S. Shin: Some Examples of The Union of Two Linear Star-configurations in
${\mathbb{P}}^2$ Having Generic Hilbert Function. J. Chungcheong Math. Soc. 26 (2013), no. 2, 403-409. https://doi.org/10.14403/JCMS.2013.26.2.403