AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

Young Rock Kim^{\dagger} and Yong-Su Shin ${ }^{\ddagger}$

Abstract

In this paper, we study an Artinian point-configuration quotient having the SLP. We show that an Artinian quotient of points in \mathbb{P}^{n} has the SLP when the union of two sets of points has a specific Hilbert function. As an application, we prove that an Artinian linear star configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP if \mathbb{X} and \mathbb{Y} are linear starconfigurations in \mathbb{P}^{2} of type s and t for $s \geq\binom{ t}{2}-1$ and $t \geq 3$. We also show that an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP if \mathbb{X} is a \mathbb{k}-configuration of type $(1,2)$ or $(1,2,3)$ in \mathbb{P}^{2}, and $\mathbb{X} \cup \mathbb{Y}$ is a basic configuration in \mathbb{P}^{2}.

1. Introduction

Ideals of sets of finite points in \mathbb{P}^{n} have been studied for a long time ([8,9,11]), and in particular we consider an ideal of a special configuration in \mathbb{P}^{n}, so called a star-configuration and a \mathbb{k}-configuration in $\mathbb{P}^{n}([1-3,6,7,9-11,15])$. In 2006, Geramita, Migliore, and Sabourin introduced the notion of a star-configuration set of points in \mathbb{P}^{2} (see [10]), the name having been inspired by the fact that 10 -points in \mathbb{P}^{2}, defined by 5 general linear forms in $\mathbb{k}\left[x_{0}, x_{1}, x_{2}\right]$ resembles a star. In this paper, we refer to this as a "linear star-configuration", as more general definition of star-configurations has evolved through the subsequent literature (see $[1,6,7,19]$). Indeed, a star-configuration in \mathbb{P}^{n} has been studied to find the dimension of secant varieties to the variety of reducible forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, where \mathbb{k} is a field of characteristic 0 (see $[4,5,20]$).

If R / I is a standard graded Artinian algebra and ℓ is a general linear form, we recall that R / I is said to have the weak Lefschetz property (WLP) if the

[^0]multiplication map by ℓ
$$
[R / I]_{d} \xrightarrow{\times \ell}[R / I]_{d+1}
$$
has maximal rank for every $d \geq 0$. Over the years, there have been several papers which have devoted to a classification of possible Artinian quotients having the WLP (see [1, $8,9,13,14,16-18,21,22])$. The strong Lefschetz property ($S L P$) says that for every $i \geq 1$ the multiplication map by ℓ^{i}
$$
[R / I]_{d} \xrightarrow{\times \ell^{i}}[R / I]_{d+i}
$$
has maximal rank for every $d \geq 0([13,14,17])$. In [14] the authors proved that a complete intersection ideal in $\mathbb{k}\left[x_{0}, x_{1}\right]$ has the SLP. Moreover, in [13], the authors give a nice description for a graded Artinian ring having the SLP by using the so-called Jordan type (see Lemma 2.2). The Jordan type is the partition of n specifying the lengths of blocks in the Jordan block matrix determined by the multiplication map by ℓ in a suitable \mathbb{k}-basis for R / I. Here, we apply this result often to show that some Artinian quotients of the ideals of points in \mathbb{P}^{n} have the SLP.

We use Hilbert functions for many our arguments. Given a homogeneous ideal $I \subset R$, the Hilbert function of R / I, denoted $\mathbf{H}_{R / I}$, is the numerical function $\mathbf{H}_{R / I}: \mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{Z}^{+} \cup\{0\}$ defined by

$$
\mathbf{H}_{R / I}(i):=\operatorname{dim}_{\mathbb{k}}[R / I]_{i}=\operatorname{dim}_{\mathbb{k}}[R]_{i}-\operatorname{dim}_{\mathbb{k}}[I]_{i},
$$

where $[R]_{i}$ and $[I]_{i}$ denote the i-th graded component of R and I, respectively. If $I:=I_{\mathbb{X}}$ is the defining ideal of a subscheme \mathbb{X} in \mathbb{P}^{n}, then we denote

$$
\mathbf{H}_{R / I_{\mathbb{X}}}(i):=\mathbf{H}_{\mathbb{X}}(i) \quad \text { for } \quad i \geq 0
$$

and call it the Hilbert function of \mathbb{X}.
Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field \mathbb{k} of characteristic 0 . For positive integers r and s with $1 \leq r \leq \min \{n, s\}$, suppose F_{1}, \ldots, F_{s} are general forms in R of degrees d_{1}, \ldots, d_{s}, respectively. Here s general forms F_{1}, \ldots, F_{s} in R means that all subsets of size $1 \leq r \leq \min \{n+1, s\}$ are regular sequences in R, and if $\mathcal{H}=\left\{\boldsymbol{F}_{1}, \ldots, \boldsymbol{F}_{s}\right\}$ is a collection of distinct hypersurfaces in \mathbb{P}^{n} corresponding to general F_{1}, \ldots, F_{s} respectively, then the hypersurfaces meet properly, by which we mean that the intersection of any r of these hypersurfaces with $1 \leq r \leq \min \{n, s\}$ has codimesion r. We call the variety \mathbb{X} defined by the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{r} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{r}}\right)
$$

a star-configuration in \mathbb{P}^{n} of type (r, s). In particular, if \mathbb{X} is a star-configuration in \mathbb{P}^{n} of type (n, s), then we simply call a point star-configuration in \mathbb{P}^{n} of type s for short.

Notice that each n-forms $F_{i_{1}}, \ldots, F_{i_{n}}$ of s-general forms F_{1}, \ldots, F_{s} in R define $d_{i_{1}} \cdots d_{i_{n}}$ points in \mathbb{P}^{n} for each $1 \leq i_{1}<\cdots<i_{n} \leq s$. Thus the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{n} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{n}}\right)
$$

defines a finite set \mathbb{X} of points in \mathbb{P}^{n} with

$$
\operatorname{deg}(\mathbb{X})=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq s} d_{i_{1}} d_{i_{2}} \cdots d_{i_{n}}
$$

Furthermore, if F_{1}, \ldots, F_{s} are general linear (quadratic, cubic, quartic, quintic, etc) forms in R, then we call \mathbb{X} a linear (quadratic, cubic, quartic, quintic, etc) star-configuration in \mathbb{P}^{n} of type s, respectively.

To provide some additional focus to this paper, we consider the following questions.
Question 1.1. Let \mathbb{X} and \mathbb{Y} be finite sets of points in \mathbb{P}^{n} and $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots\right.$, x_{n}].
(a) Does an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ have the WLP?
(b) Does an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ have the SLP?

Question 1.2. More precisely, let \mathbb{X} and \mathbb{Y} be finite point star configurations in \mathbb{P}^{n}, or \mathbb{X} be a \mathbb{k}-configuration in \mathbb{P}^{n} such that $\mathbb{X} \cup \mathbb{Y}$ is a basic configuration in \mathbb{P}^{n}.
(a) Does an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ have the WLP?
(b) Does an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ have the SLP?

In [1], the authors proved that an Artinian linear star-configuration quotient in \mathbb{P}^{2} has the WLP, which is a partial answer to Question 1.2(a). Indeed, it is still true that any finite number of an Artinian linear point star-configuration quotient in \mathbb{P}^{n} has the WLP. In [8,9], the authors show that Question 1.2(a) is true in general if \mathbb{X} is a \mathbb{k}-configuration in \mathbb{P}^{n} and $\mathbb{X} \cup \mathbb{Y}$ is a basic configuration in \mathbb{P}^{n} with the condition $2 \sigma(\mathbb{X}) \leq \sigma(\mathbb{X} \cup \mathbb{Y})$, where

$$
\sigma(\mathbb{X})=\min \left\{i \mid \mathbf{H}_{\mathbb{X}}(i-1)=\mathbf{H}_{\mathbb{X}}(i)\right\}
$$

In this paper, we focus on Questions 1.1(b) and 1.2(b). More precisely, we first find a condition in which an Artinian quotient of two sets of points in \mathbb{P}^{n} has the SLP (see Lemma 2.4 and Proposition 2.5). Next we find some Artinian linear star configuration quotient in \mathbb{P}^{2} that has the SLP (see Corollary 2.9). Then, we find an Artinian \mathbb{k}-configuration quotient having the SLP (see Proposition 3.4 and Theorem 3.6). Unfortunately, we do not have any counter example of an Artinian quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ of two point sets in \mathbb{P}^{n}, which does not have the SLP, and thus we expect Question 1.1(a) and (b) are true in general, especially when \mathbb{X} and \mathbb{Y} are sets of general points in \mathbb{P}^{n}.
Acknowledgement. We took inspiration for this subject from Professor Anthony Iarrobino during the Research Station on Commutative Algebra, June 13-18, 2016, which was supported by the Korea Institute of Advanced Study.

2. Artinian linear star-configuration quotients in \mathbb{P}^{2}

In this section, we shall show that an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP if \mathbb{X} and \mathbb{Y} are linear star-configurations in \mathbb{P}^{2} of type s and t with $s \geq\binom{ t}{2}-1$ and $t \geq 3$, respectively.

We first introduce the following two results of a star-configuration in \mathbb{P}^{n} in [13, 22].

Remark 2.1. Let \mathbb{k} be a field of characteristic zero and let $F \in \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ $=R=\bigoplus_{i \geq 0} R_{i}(n \geq 1)$ be a homogeneous polynomial (form) of degree d, i.e., $F \in R_{d}$. It is well known that in this case each R_{i} has a basis consisting of i-th powers of linear forms. Thus we may write

$$
F=\sum_{i=1}^{r} \alpha_{i} L_{i}^{d}, \quad \alpha_{i} \in \mathbb{k}, \quad L_{i} \in R_{1} .
$$

If \mathbb{k} is algebraically closed (which we now assume for the rest of the paper), then each $\alpha_{i}=\beta_{i}^{d}$ for some $\beta_{i} \in \mathbb{k}$ and so we can write

$$
\begin{equation*}
F=\sum_{i=1}^{r}\left(\beta_{i} L_{i}\right)^{d}=\sum_{i=1}^{r} M_{i}^{d}, \quad M_{i} \in R_{1} . \tag{2.1}
\end{equation*}
$$

We call a description of F as in equation (2.1), a Waring Decomposition of F. The least integer r such that F has a Waring Decomposition with exactly r summands is called the Waring Rank (or simply the rank) of F.

Lemma 2.2 ([13]). Assume A is graded and \mathbf{H}_{A} is unimodal. Then
(a) A has the WLP if and only if the number of parts of the Jordan type $J_{\ell}=\max \left\{\mathbf{H}_{A}(i)\right\}$. (The Sperner number of A);
(b) ℓ is a strong Lefschetz element of A if and only if $J_{\ell}=\mathbf{H}_{A}^{\vee}$.

Proposition 2.3 ([22, Proposition 2.5]). Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type s and t, respectively, with $3 \leq t$ and $s \geq\left\lfloor\frac{1}{2}\binom{t}{2}\right\rfloor$. Then $\mathbb{X} \cup \mathbb{Y}$ has generic Hilbert function.

Recall that

$$
\mathbf{H}_{A}: h_{0} \quad h_{1} \quad \cdots \cdots \quad h_{c}
$$

is said to be unimodal if there exists j such that

$$
\left\{\begin{array}{l}
h_{i} \leq h_{i+1} \quad(i<j) \\
h_{i} \geq h_{i+1} \quad(j \leq i)
\end{array}\right.
$$

Lemma 2.4. Let \mathbb{X} be a finite set of points in \mathbb{P}^{n} and let A be an Artinian quotient of the coordinate ring of \mathbb{X}. Assume that $\mathbf{H}_{A}(i)=\mathbf{H}_{\mathbb{X}}(i)$ for every $0 \leq i \leq s-1$ and $A_{s}=0$. Then an Artinian ring A has the SLP.

Proof. First, we assume that the Hilbert function of A is of the form

$$
\mathbf{H}_{A}: h_{0} \quad h_{1} \quad \cdots \quad h_{\sigma-1} \quad h_{\sigma} \quad \cdots \quad h_{s-1} \quad 0,
$$

where $h_{\sigma-2}<h_{\sigma-1}=h_{\sigma}=\cdots=h_{s-1}$.
Let ℓ be a general linear form in A_{1}. Since ℓ is not a zero divisor of A, we see that the multiplication map by ℓ^{s-1}

$$
\left[R / I_{\mathbb{X}}\right]_{0}=[A]_{0} \xrightarrow{\times \ell^{s-1}}[A]_{s-1}=\left[R / I_{\mathbb{X}}\right]_{s-1}
$$

is injective. Hence we have a string of length s

$$
1, \ell, \ldots, \ell^{s-1}
$$

and so the Jordan type J_{ℓ} for \mathbf{H}_{A} is of the form

$$
J_{\ell}=(s, \ldots)
$$

(i) Let $i=1$. Then the multiplication map by ℓ^{s-2}

$$
\left[R / I_{\mathbb{X}}\right]_{1}=[A]_{1} \xrightarrow{\times \ell^{s-2}}[A]_{s-1}=\left[R / I_{\mathbb{X}}\right]_{s-1}
$$

is injective. Hence there are $g_{1}:=\left(h_{1}-h_{0}\right)=\left(h_{1}-1\right)$ linear forms $F_{1,1}, F_{1,2}, \ldots, F_{1, g_{1}} \in[A]_{1}$ such that the h_{1} linear forms

$$
\ell, F_{1,1}, F_{1,2}, \ldots, F_{1, g_{1}}
$$

are linearly independent. Hence there are g_{1}-strings of length $(s-1)$

$$
\begin{array}{ccc}
F_{1,1}, F_{1,1} \ell, & \ldots, & F_{1,1} \ell^{s-2}, \quad \text { and } \\
F_{1,2}, F_{1,2} \ell, & \ldots, & F_{1,2} \ell^{s-2}, \\
& \vdots & \\
F_{1, g_{1}}, F_{1, g_{1}} \ell, & \ldots, & F_{1, g_{1}} \ell^{s-2} .
\end{array}
$$

(ii) For $1 \leq i<\sigma-1$ and $1 \leq j \leq i$, define

$$
g_{j}:=h_{j}-h_{j-1}
$$

for such j. Assume that there are g_{j}-forms $F_{j, 1}, \ldots, F_{j, g_{j}} \in[A]_{j}$ and there are g_{j}-strings of length $(s-j)$

$$
\begin{array}{ccc}
F_{j, 1}, F_{j, 1} \ell, & \ldots, & F_{j, 1} \ell^{s-j-1} \\
F_{j, 2}, F_{j, 2} \ell, & \ldots, & F_{j, 2} \ell^{s-j-1} \\
& \vdots & \\
F_{j, g_{j}}, F_{j, g_{j}} \ell, & \ldots, & F_{j, g_{j}} \ell^{s-j}
\end{array}
$$

such that the $\left(1+\sum_{k=1}^{j} g_{k}\right)$-forms

$$
\ell^{j}, \underbrace{F_{1,1} \ell^{j-1}, \ldots, F_{1, g_{1}} \ell^{j-1}}_{g_{1} \text {-forms }}, \ldots, \underbrace{F_{j-1,1} \ell, \ldots, F_{j-1, g_{j-1}} \ell}_{g_{j-1} \text {-forms }}, \underbrace{F_{j, 1}, \ldots, F_{j, g_{j}}}_{g_{j} \text {-forms }}
$$

are linearly independent for such j.
Since the multiplication map by $\ell^{(s-1)-(i+1)}$

$$
\left[R / I_{\mathbb{X}}\right]_{i+1}=[A]_{i+1} \xrightarrow{\times \ell^{(s-1)-(i+1)}}[A]_{s-1}=\left[R / I_{\mathbb{X}}\right]_{s-1}
$$

is injective, there are linearly independent $g_{i+1}:=\left(h_{i+1}-h_{i}\right)$-forms $F_{i+1,1}, \ldots, F_{i+1, g_{i+1}} \in[A]_{i+1}$. Then the following $\left(1+\sum_{k=1}^{i+1} g_{k}\right)$-forms

$$
\ell^{i+1}, \underbrace{F_{1,1} \ell^{i}, \ldots, F_{1, g_{1}} \ell^{i}}_{g_{1} \text {-forms }}, \ldots, \underbrace{F_{i-1,1} \ell^{2}, \ldots, F_{i-1, g_{i-1}} \ell^{2}}_{g_{i-1} \text {-forms }}, \underbrace{F_{i, 1} \ell, \ldots, F_{i, g_{i}} \ell}_{g_{i} \text {-forms }}, \underbrace{F_{i+1,1}, \ldots, F_{i+1, g_{i+1}}}_{g_{i+1} \text {-forms }}
$$

are linearly independent as well. Hence we have g_{i+1}-strings of length $(s-i-1)$

$$
\begin{array}{rcc}
F_{i+1,1}, F_{i+1,1} \ell, & \ldots, & F_{i+1,1} \ell^{s-i-2}, \\
F_{i+1,2}, F_{i+1,2} \ell, & \ldots, & F_{i+1,2} \ell^{s-i-2}, \\
& \vdots & \\
F_{i+1, g_{i+1}}, F_{i+1, g_{i+1}} \ell, & \ldots, & F_{i+1, g_{i+1}} \ell^{s-i-2} .
\end{array}
$$

It is from (i) \sim (ii) that the Jordan type

$$
J_{\ell}=(s, \underbrace{s-1, \ldots, s-1}_{g_{1} \text {-times }}, \ldots, \underbrace{s-i, \ldots, s-i}_{g_{i} \text {-times }}, \ldots, \underbrace{s-\sigma+1, \ldots, s-\sigma+1}_{g_{\sigma-1} \text {-times }})=\mathbf{H}_{A}^{\vee},
$$

as we wished. Therefore, by Lemma 2.2, an Artinian ring has the SLP, which completes the proof.

The following proposition is immediate from Lemma 2.4.
Proposition 2.5. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type t and s with $t \geq 2$ and $s \geq\binom{ t}{2}$. Then an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the $S L P$. Proof. First, note that the Hilbert functions of $R / I_{\mathbb{X}}, R / I_{\mathbb{Y}}$, and $R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right)$ (see Proposition 2.3) are
respectively. Using the exact sequence

$$
0 \rightarrow R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right) \rightarrow R / I_{\mathbb{X}} \oplus R / I_{\mathbb{Y}} \rightarrow R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right) \rightarrow 0,
$$

the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is
and so by Lemma 2.4, an Artinian linear star configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, which completes the proof.

Example 2.6. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type 5 and 9 , respectively. Note that $9=\binom{5}{2}-1$. By Proposition 2.3 the Hilbert function of an Artinian ring $A:=R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

$$
(1,3,6,10,10,10,10,10, \stackrel{8-\mathrm{th}}{1})
$$

(a) By Waring decomposition, there is a general linear form $\ell \in[A]_{1}$ such that

$$
\ell^{8} \in[A]_{8}
$$

i.e., we have a string of length 9

$$
1, \ell, \ldots, \ell^{8} .
$$

Hence the Jordan type J_{ℓ} is of the form

$$
J_{\ell}=(9, \ldots) .
$$

(b) Note that the multiplication map by ℓ^{6}

$$
[A]_{1} \xrightarrow{\times \ell^{6}}[A]_{7}
$$

is injective, and the multiplication map by ℓ^{7}

$$
[A]_{1} \xrightarrow{\times \ell^{7}}[A]_{8}
$$

is surjective. Then we can choose a basis $\left\{\ell, F_{1,1}, F_{1,2}\right\}$ for $[A]_{1}$ such that

$$
F_{1,1} \ell^{6}, F_{1,2} \ell^{6} \neq 0, \quad \text { and } \quad F_{1,1} \ell^{7}, F_{1,2} \ell^{7}=0
$$

Moreover, since $\left\{F_{1,1} \ell^{6}, F_{1,2} \ell^{6}\right\}$ is linearly independent, we have 2 -strings of length 7

$$
\begin{aligned}
& F_{1,1}, F_{1,1} \ell, \ldots, F_{1,1} \ell^{6} \text {, and } \\
& F_{1,2}, F_{1,2} \ell, \ldots, F_{1,2} \ell^{6} .
\end{aligned}
$$

(c) Note that the multiplication map by ℓ^{5}

$$
[A]_{2} \xrightarrow{\times \ell^{5}}[A]_{7}
$$

is injective, and the multiplication map by ℓ^{6}

$$
[A]_{2} \stackrel{\times \ell^{6}}{\rightarrow}[A]_{8}
$$

is surjective. Then we can choose a basis $\left\{\ell^{2}, F_{1,1} \ell, F_{1,2} \ell, F_{2,1}, F_{2,2}, F_{2,3}\right\}$ for $[A]_{2}$ such that

$$
F_{2,1} \ell^{5}, F_{2,2} \ell^{5}, F_{2,3} \ell^{5} \neq 0, \quad \text { and } \quad F_{2,1} \ell^{6}, F_{2,2} \ell^{6}, F_{2,3} \ell^{6}=0 .
$$

Moreover, since $\left\{F_{2,1} \ell^{5}, F_{2,2} \ell^{5}, F_{2,3} \ell^{5}\right\}$ is linearly independent, we have 3strings of length 6

$$
\begin{aligned}
& F_{2,1}, F_{2,1} \ell, \ldots, F_{2,1} \ell^{5}, \\
& F_{2,2}, F_{2,2} \ell, \ldots, F_{2,2} \ell^{5} \text {, and } \\
& F_{2,3}, F_{2,3} \ell, \ldots, F_{2,3} \ell^{5} .
\end{aligned}
$$

(d) Note that the multiplication map by ℓ^{4}

$$
[A]_{3} \xrightarrow{\times \ell^{4}}[A]_{7}
$$

is injective, and the multiplication map by ℓ^{6}

$$
[A]_{3} \xrightarrow{x \ell^{5}}[A]_{8}
$$

is surjective. Then we can choose a basis $\left\{\ell^{3}, F_{1,1} \ell^{2}, F_{1,2} \ell^{2}, F_{2,1} \ell, F_{2,2} \ell\right.$, $\left.F_{2,3} \ell, F_{3,1}, \ldots, F_{3,4}\right\}$ for $[A]_{3}$ such that

$$
F_{3,1} \ell^{4}, \ldots, F_{3,4} \ell^{4} \neq 0, \quad \text { and } \quad F_{3,1} \ell^{5}, \ldots, F_{3,4} \ell^{5}=0
$$

Moreover, since $\left\{F_{3,1} \ell^{4}, \ldots, F_{3,4} \ell^{4}\right\}$ is linearly independent, we have 4strings of length 5

$$
\begin{aligned}
& F_{3,1}, F_{3,1} \ell, \ldots, F_{3,1} \ell^{4} \\
& F_{3,2}, F_{3,2} \ell, \ldots, F_{3,2} \ell^{4} \\
& F_{3,3}, F_{3,3} \ell, \ldots, F_{3,3} \ell^{4}, \quad \text { and } \\
& F_{3,4}, F_{3,4} \ell, \ldots, F_{3,4} \ell^{4}
\end{aligned}
$$

This shows that the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is

$$
J_{\ell}=(9,7,7,6,6,6,5,5,5,5)=\mathbf{H}_{R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)}^{\vee}
$$

Thus, by Lemma 2.2, an Artinian quotient of two linear star-configurations in \mathbb{P}^{2} of type 5 and 9 has the SLP, as we wished.

Example 2.6 motivates the following proposition.
Proposition 2.7. Let \mathbb{X} be a finite set of points in \mathbb{P}^{n} and let A be an Artinian quotient of the coordinate ring of \mathbb{X}. Assume that $\mathbf{H}_{A}(i)=\mathbf{H}_{\mathbb{X}}(i)$ for every $0 \leq i \leq s-2$ with $A_{s}=0$, and the Hilbert function of A is of the form

$$
\mathbf{H}_{A}: \begin{array}{llllllllll}
h_{0} & h_{1} & \cdots & h_{\sigma-1} & h_{\sigma} & \cdots & (s-2)-n d \\
h_{\sigma} & h_{s-1} & 0
\end{array}
$$

where $h_{\sigma-2}<h_{\sigma-1}=h_{\sigma}$ and $h_{s-1}=1$. Then an Artinian ring A has the SLP.

Proof. We first define

$$
g_{i}:=h_{i}-h_{i-1} \quad \text { for } \quad i=1, \ldots, \sigma-1
$$

(a) By Waring decomposition, there is a linear form $\ell \in[A]_{1}$ such that

$$
\ell^{s-1} \in[A]_{s-1}
$$

In other words, there is a string of length s as

$$
1, \ell, \ldots, \ell^{s-1}
$$

Hence Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{\ell}=(s, \ldots)
$$

(b) Note that the multiplication map by ℓ^{s-3}

$$
\left[R / I_{\mathbb{X}}\right]_{1}=[A]_{1} \xrightarrow{\times \ell^{s-3}}[A]_{s-2}=\left[R / I_{\mathbb{X}}\right]_{s-2}
$$

is injective, and the multiplication map by ℓ^{s-2}

$$
[A]_{1} \xrightarrow{\times \ell^{s-2}}[A]_{s-1}
$$

is surjective. Then we can choose a basis $\left\{\ell, F_{1,1}, F_{1,2}, \ldots, F_{1, g_{1}}\right\}$ for $[A]_{1}$ such that
$F_{1,1} \ell^{s-3}, F_{1,2} \ell^{s-3}, \ldots, F_{1, g_{1}} \ell^{s-3} \neq 0$, and $F_{1,1} \ell^{s-2}, F_{1,2} \ell^{s-2}, \ldots, F_{1, g_{1}} \ell^{s-2}=0$.
Moreover, since $\left\{F_{1,1} \ell^{s-3}, F_{1,2} \ell^{s-3}, \ldots, F_{1, g_{1}} \ell^{s-3}\right\}$ is linearly independent, we have g_{1}-strings of length $(s-2)$

$$
\begin{array}{ccl}
F_{1,1}, F_{1,1} \ell, & \ldots, & F_{1,1} \ell^{s-3}, \\
F_{1,2}, F_{1,2} \ell, & \ldots, & F_{1,2} \ell^{s-3}, \\
& \vdots & \\
F_{1, g_{1}-1}, F_{1, g_{1}-1} \ell, & \ldots, & F_{1, g_{1}-1} \ell^{s-3}, \quad \text { and } \\
F_{1, g_{1}}, F_{1, g_{1}} \ell, & \ldots, & F_{1, g_{1}} \ell^{s-3} .
\end{array}
$$

This means that Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{\ell}=(s, \underbrace{s-2, \ldots, s-2}_{g_{1} \text {-times }}, \ldots) .
$$

(c) Let $1 \leq i \leq \sigma-1$. Note that the multiplication map by ℓ^{s-i-2}

$$
\left[R / I_{\mathbb{X}}\right]_{i}=[A]_{i} \xrightarrow{\times \ell^{s-i-2}}[A]_{s-2}=\left[R / I_{\mathbb{X}}\right]_{s-2}
$$

is injective, and the multiplication map by ℓ^{s-i-1}

$$
\left[R / I_{\mathbb{X}}\right]_{i}=[A]_{i} \xrightarrow{\times \ell^{s-i-1}}[A]_{s-1}
$$

is surjective. Then we can choose a basis \mathcal{B}_{i}

$$
\begin{gathered}
\mathcal{B}_{i}=\{\ell^{i}, \underbrace{F_{1,1} \ell^{i-1}, \ldots, F_{1, g_{1}} \ell^{i-1}}_{g_{1} \text {-times }}, \underbrace{F_{2,1} \ell^{i-2}, \ldots, F_{2, g_{2}} \ell^{i-2}}_{g_{i-1} \text {-times }}, \ldots, \\
\underbrace{F_{i-1,1} \ell, \ldots, F_{i-1, g_{i-1}} \ell}_{g_{2} \text {-times }}, \underbrace{F_{i, 1}, \ldots, F_{i, g_{i}}}_{g_{i} \text {-times }}\}
\end{gathered},
$$

for $[A]_{i}$ such that
$F_{i, 1} \ell^{s-i-2}, \ldots, F_{i, g_{i}} \ell^{s-i-2} \neq 0, \quad$ and $\quad F_{i, 1} \ell^{s-i-1}, \ldots, F_{i, g_{i}} \ell^{s-i-1}=0$.
Moreover, since $\left\{F_{i, 1} \ell^{s-i-2}, \ldots, F_{i, g_{i}} \ell^{s-i-2}\right\}$ is linearly independent, we have g_{i}-strings of length $(s-i-1)$

$$
\begin{array}{rll}
F_{i, 1}, F_{i, 1} \ell, & \ldots, & F_{i, 1}^{s-i-2}, \\
F_{i, 2}, F_{i, 2} \ell, & \ldots, & F_{i, 2}^{s-i-2}, \\
& \vdots & \\
F_{i, g_{1}-1}, F_{i, g_{1}-1} \ell, & \ldots, & F_{i, g_{1}-1}^{s-i-2}, \\
F_{i, g_{i}}, F_{i, g_{i}} \ell, & \ldots, & F_{i, g_{i}} \ell^{s-i-2} .
\end{array} \quad \text { and }
$$

Hence Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{\ell}=(s, \underbrace{s-2, s-2, \ldots, s-2}_{g_{1} \text {-times }}, \ldots, \underbrace{s-i-1, s-i-1, \ldots, s-i-1}_{g_{i} \text {-times }}, \ldots)
$$

for such i.
It is from (a) \sim (c) that the Jordan type J_{ℓ} of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is

```
\(J_{\ell}=\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)} \vee\)
    \(=(s, \underbrace{s-2, s-2, \ldots, s-2}_{g_{1} \text {-times }}, \ldots, \underbrace{s-i-1, s-i-1, \ldots, s-i-1}_{g_{i} \text {-times }}, \ldots\),
    \(\underbrace{s-\sigma, s-\sigma, \ldots, s-\sigma}_{g_{\sigma-1} \text {-times }})\).
```

Therefore, by Lemma 2.2, an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, as we wished.

The following two corollaries are immediate from Proposition 2.7.
Corollary 2.8. Let \mathbb{X} and \mathbb{Y} be finite sets of general points in \mathbb{P}^{n} with $n \geq 2$ and $s \geq t \geq n$. Assume that

$$
\binom{s}{n} \leq \operatorname{deg}(\mathbb{X})<\binom{s+1}{n}, \quad\binom{t}{n} \leq \operatorname{deg}(\mathbb{Y})<\binom{t+1}{n}
$$

and

$$
\operatorname{deg}(\mathbb{X})+\operatorname{deg}(\mathbb{Y})=\binom{s+1}{n}+1
$$

Then an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the $S L P$.
Proof. Since \mathbb{X} and \mathbb{Y} are finite sets of general points in \mathbb{P}^{n}, we get that the Hilbert functions of $R / I_{\mathbb{X}}, R / I_{\mathbb{Y}}$, and $R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right)$ are

respectively. Using the exact sequence

$$
0 \rightarrow R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right) \rightarrow R / I_{\mathbb{X}} \oplus R / I_{\mathbb{Y}} \rightarrow R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right) \rightarrow 0,
$$

the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

$$
\begin{array}{llllllllll}
\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathbb{Y}}\right)} & : & 1 & 3 & \cdots & \begin{array}{c}
(t-n)-\mathrm{th} \\
\binom{t}{n}
\end{array} \operatorname{deg}(\mathbb{Y}) & \cdots & \begin{array}{c}
(s-n) \text {-th } \\
\operatorname{deg}(\mathbb{Y})
\end{array} & 1 & \rightarrow,
\end{array}
$$

and so by Proposition 2.7, an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, which completes the proof.

Corollary 2.9. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type s and t with $s \geq\binom{ t}{2}-1$ and $t \geq 3$. Then an Artinian linear star-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

Proof. By Proposition 2.5, it holds for $s \geq\binom{ t}{2}$. So we assume that $s=\binom{t}{2}-1$. First note that

$$
\begin{aligned}
{[\operatorname{deg}(\mathbb{X})+\operatorname{deg}(\mathbb{Y})]-\binom{s+1}{2} } & =\left[\binom{s}{2}+\binom{t}{2}\right]-\binom{s+1}{2} \\
& =\left[\binom{s}{2}+s+1\right]-\binom{s+1}{2}=1
\end{aligned}
$$

Hence the Hilbert functions of $R / I_{\mathbb{X}}, R / I_{\mathbb{Y}}$, and $R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right)$ (see Proposition 2.3) are
respectively. Using the exact sequence

$$
0 \rightarrow R /\left(I_{\mathbb{X}} \cap I_{\mathbb{Y}}\right) \rightarrow R / I_{\mathbb{X}} \oplus R / I_{\mathbb{Y}} \rightarrow R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right) \rightarrow 0,
$$

the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is
and so by Proposition 2.7, an Artinian linear star-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, as we wished.

3. Artinian \mathbb{k}-configuration quotients in \mathbb{P}^{2}

In this section, we shall introduce another Artinian quotient having the SLP. We first recall a definition of a \mathbb{k}-configuration in \mathbb{P}^{2} and some preliminary result.

Definition 3.1. A \mathbb{k}-configuration of points in \mathbb{P}^{2} is a finite set \mathbb{X} of points in \mathbb{P}^{2} which satisfy the following conditions: there exist integers $1 \leq d_{1}<\cdots<d_{m}$, and subsets $\mathbb{X}_{1}, \ldots, \mathbb{X}_{m}$ of \mathbb{X}, and distinct lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{m} \subseteq \mathbb{P}^{2}$ such that
(a) $\mathbb{X}=\bigcup_{i=1}^{m} \mathbb{X}_{i}$,
(b) $\left|\mathbb{X}_{i}\right|=d_{i}$ and $\mathbb{X}_{i} \subset \mathbb{L}_{i}$ for each $i=1, \ldots, m$, and
(c) $\mathbb{L}_{i}(1<i \leq m)$ does not contain any points of \mathbb{X}_{j} for all $j<i$.

In this case, the \mathbb{k}-configuration in \mathbb{P}^{2} is said to be of type $\left(d_{1}, \ldots, d_{m}\right)$.
Recall that a finite complete intersection set of points \mathbb{Z} in \mathbb{P}^{n} is said to be a basic configuration in \mathbb{P}^{n} (see $\left.[11,12]\right)$ if there exist integers r_{1}, \ldots, r_{n} and distinct hyperplanes $\mathbb{L}_{i j}\left(1 \leq i \leq n, 1 \leq j \leq r_{i}\right)$ such that

$$
\mathbb{Z}=\mathbb{H}_{1} \cap \cdots \cap \mathbb{H}_{n} \text { as schemes, where } \mathbb{H}_{i}=\mathbb{L}_{i 1} \cup \cdots \cup \mathbb{L}_{i r_{i}}
$$

In this case \mathbb{Z} is said to be of type $\left(r_{1}, \ldots, r_{n}\right)$.
Before we prove our main theorem, we first introduce two lemmas.

Lemma 3.2. Let \mathbb{X} be a \mathbb{k}-configuration in \mathbb{P}^{2} of type ($1,2, \ldots$, d) (see Figure 1), and let \mathbb{L}_{i} and \mathbb{M}_{j} be lines in \mathbb{P}^{2} defined by linear forms $x_{0}-(i-1) x_{2}$ and $x_{1}-(j-1) x_{2}$ for $1 \leq i, j \leq d-1$, respectively. Then the multiplication map by $L_{1}:=x_{0}$

$$
\left[R / I_{\mathbb{X}}\right]_{i} \xrightarrow{\times L_{1}}\left[R / I_{\mathbb{X}}\right]_{i+1}
$$

is injective for $i \geq 0$. In particular, for $j \geq 1$, the multiplication map by L_{1}^{j}

$$
\left[R / I_{\mathbb{X}}\right]_{i} \xrightarrow{\times L_{1}^{j}}\left[R / I_{\mathbb{X}}\right]_{i+j}
$$

is injective for every $i \geq 0$.

Figure 1

Proof. If $d=1$, then \mathbb{X} is a set of a single point in \mathbb{P}^{2}, so it is immediate. Hence we assume that $d>1$.

Note that
$I_{\mathbb{X}}=\left(L_{1} \cdots L_{d}, M_{1} L_{2} \cdots L_{d}, M_{1} M_{2} L_{3} \cdots L_{d}, \ldots, M_{1} \cdots M_{d-1} L_{d}, M_{1} M_{2} \cdots M_{d}\right)$
(see $[9,11]$) and the Hilbert function of $R / I_{\mathbb{X}}$ is

$$
\mathbf{H}_{\mathbb{X}} \quad: \quad 1 \quad\binom{1+2}{2} \quad \ldots \quad\binom{(d-1)+2}{2} \quad\binom{d+1}{2} \quad \rightarrow
$$

(see Theorems 2.7 and 3.6 in [9]).
First, it is obvious that the multiplication map by $L_{1}:=x_{0}$

$$
\left[R / I_{\mathbb{X}}\right]_{i} \xrightarrow{\times L_{1}}\left[R / I_{\mathbb{X}}\right]_{i+1}
$$

is injective for $0 \leq i \leq d-2$.
Let $i=d-1=j_{1}+j_{2}+j_{3}$ with $0 \leq j_{1}, j_{2}, j_{3} \leq d$.
(i) Assume $j_{2}=0$ and

$$
\begin{gathered}
x_{0}^{j_{1}} x_{2}^{j_{3}} L_{1} \in\left[I_{\mathbb{X}}\right]_{d}=\left\langle L_{1} \cdots L_{d}, M_{1} L_{2} \cdots L_{d}, M_{1} M_{2} L_{3} \cdots L_{d}, \ldots\right. \\
\left.M_{1} \cdots M_{d-1} L_{d}, M_{1} M_{2} \cdots M_{d}\right\rangle
\end{gathered}
$$

that is,

$$
x_{0}^{j_{1}} x_{2}^{j_{3}} L_{1}=\alpha_{1} L_{1} \cdots L_{d}+\alpha_{2} M_{1} L_{2} \cdots L_{d}+\alpha_{3} M_{1} M_{2} L_{3} \cdots L_{d}+\cdots
$$

$$
+\alpha_{d} M_{1} \cdots M_{d-1} L_{d}+\alpha_{d+1} M_{1} M_{2} \cdots M_{d}
$$

for some $\alpha_{i} \in \mathbb{k}$. Let $\wp_{i, j}$ be a point defined by two linear forms L_{i} and M_{j}. Since two linear forms L_{1} and M_{2} vanish on a point $\wp_{1,2}$, we get that

$$
\alpha_{2}=0 .
$$

Moreover, since two forms L_{1} and M_{3} vanish on a point $\wp_{1,3}$, we have

$$
\alpha_{3}=0 .
$$

By continuing this procedure, one can show that

$$
\alpha_{2}=\cdots=\alpha_{d}=0 .
$$

Hence

$$
x_{0}^{j_{1}} x_{2}^{j_{3}} L_{1}=\alpha_{1} L_{1} \cdots L_{d}+\alpha_{d+1} M_{1} M_{2} \cdots M_{d},
$$

that is,

$$
L_{1} \mid \alpha_{d+1} M_{1} M_{2} \cdots M_{d} \quad \text { and so }, \quad \alpha_{d+1}=0
$$

It follows that

$$
x_{0}^{j_{1}} x_{2}^{j_{3}} L_{1}=\alpha_{1} L_{1} \cdots L_{d}, \quad \text { and thus, } \quad \alpha_{1}=0 .
$$

(ii) Assume $j_{2}>0$ and

$$
\begin{aligned}
x_{0}^{j_{1}} x_{1}^{j_{2}} x_{2}^{j_{3}} L_{1}= & \alpha_{1} L_{1} \cdots L_{d}+\alpha_{2} M_{1} L_{2} \cdots L_{d}+\alpha_{3} M_{1} M_{2} L_{3} \cdots L_{d} \\
& +\cdots+\alpha_{d} M_{1} \cdots M_{d-1} L_{d}+\alpha_{d+1} M_{1} M_{2} \cdots M_{d}
\end{aligned}
$$

for some $\alpha_{i} \in \mathbb{k}$. Recall that $M_{1}:=x_{1}$. Thus

$$
M_{1} \mid \alpha_{1} L_{1} \cdots L_{d}, \quad \text { and hence, } \quad \alpha_{1}=0 .
$$

By the analogous argument as in (i), one can show that

$$
\alpha_{2}=\cdots=\alpha_{d}=\alpha_{d+1}=0 .
$$

It is from (i) and (ii) that

$$
x_{0}^{j_{1}} x_{1}^{j_{2}} x_{2}^{j_{3}} L_{1} \notin\left[I_{\mathbb{X}}\right]_{d},
$$

which means that the multiplication map by L_{1}

$$
\left[R / I_{\mathbb{X}}\right]_{d-1} \xrightarrow{\times L_{1}}\left[R / I_{\mathbb{X}}\right]_{d}
$$

is injective, and surjective as well. Thus the multiplication map by L_{1}

$$
\left[R / I_{\mathbb{X}}\right]_{i} \xrightarrow{\times L_{1}}\left[R / I_{\mathbb{X}}\right]_{i+1}
$$

is injective and surjective for every $i \geq d-1$, as we wished.
So it follows that the multiplication map by L_{1}^{j}

$$
\left[R / I_{\mathbb{X}}\right]_{i} \xrightarrow{\times L_{1}^{j}}\left[R / I_{\mathbb{X}}\right]_{i+j}
$$

is injective for every $i \geq 0$. This completes the proof.

The following lemma is immediate from Proposition 2.7. But we introduce another elementary proof here.
Lemma 3.3. Let \mathbb{X} be $a \mathbb{k}$-configuration in \mathbb{P}^{2} of type $(1,2)$ in a basic configuration \mathbb{Z} in \mathbb{P}^{2} of type $(a, 2)$ with $a \geq 2$, and let $\mathbb{Y}:=\mathbb{Z}-\mathbb{X}$, (\mathbb{X} is a set of solid 3-points in \mathbb{Z} in Figure 2). Then an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the $S L P$.

$$
\begin{array}{ccccccc}
\bullet & \circ & \circ & \cdots & \circ & \circ & \mathbb{L}_{2} \\
\bullet & \bullet & \circ & \cdots & \circ & \circ & \mathbb{L}_{1} \\
\mathbb{M}_{1} & \mathbb{M}_{2} & \mathbb{M}_{3} & \cdots & \mathbb{M}_{a-1} & \mathbb{M}_{a} &
\end{array}
$$

Figure 2

Proof. First, if $a=2$, then the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

$$
\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}: \quad: \quad 1 \quad 1 \quad 0,
$$

(see [12, Theorem 2.1]) and so it follows that $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.
Now suppose $a \geq 3$ and assume that \mathbb{L}_{i} and \mathbb{M}_{j} are lines defined by linear forms $L_{i}=x_{0}-(i-1) x_{2}$ and $M_{j}=x_{1}-(j-1) x_{2}$ for i and j, respectively. Let $\wp_{i, j}$ be a point defined by two linear forms L_{i} and M_{j}. Then

$$
\begin{aligned}
& I_{\mathbb{X}}=\left(L_{1} L_{2}, L_{1} M_{1}, M_{1} M_{2}\right), \\
& I_{\mathbb{Y}}=\left(L_{1} L_{2}, L_{2} M_{3} M_{4} \cdots M_{a}, M_{2} M_{3} M_{4} \cdots M_{a}\right)
\end{aligned}
$$

(see $[9,11]$) and an ideal $I_{\mathbb{X}}+I_{\mathbb{Y}}$ has 5 -minimal generators, i.e.,

$$
I_{\mathbb{X}}+I_{\mathbb{Y}}=\left(L_{1} L_{2}, L_{1} M_{1}, M_{1} M_{2}, L_{2} M_{3} M_{4} \cdots M_{a}, M_{2} M_{3} M_{4} \cdots M_{a}\right)
$$

By [12, Theorem 2.1], the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

Note that

$$
\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}(i)=\mathbf{H}_{R / I_{\mathrm{X}}}(i)
$$

for $0 \leq i \leq a-2$.
(i) Assume $x_{0} L_{1}^{a-2}=L_{1}^{a-1} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a-1}$. Then

$$
\begin{aligned}
x_{0} L_{1}^{a-2}=L_{1}^{a-1}= & F_{1} L_{1} L_{2}+F_{2} L_{1} M_{1}+F_{3} M_{1} M_{2}+\beta_{1} L_{2} M_{3} M_{4} \cdots M_{a} \\
& +\beta_{2} M_{2} M_{3} M_{4} \cdots M_{a}
\end{aligned}
$$

for some $F_{i} \in R_{a-3}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{2} vanish on a point $\wp_{1,2}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=0$ as well. This means that

$$
x_{0} L_{1}^{a-2}=L_{1}^{a-1}=F_{1} L_{1} L_{2}+F_{2} L_{1} M_{1}+F_{3} M_{1} M_{2} \in\left[I_{\mathbb{X}}\right]_{a-1},
$$

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a, \ldots)
$$

(ii) Similarly, it is from Lemma 3.2 that

$$
x_{1} L_{1}^{a-3}, x_{2} L_{1}^{a-3} \notin\left[I_{\mathbb{X}}\right]_{a-2}=\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a-2}
$$

Furthermore, it is obvious that two forms $x_{1} L_{1}^{a-3}, x_{2} L_{1}^{a-3}$ are linearly independent in $\left[R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)\right]_{a-2}=\left[R / I_{\mathbb{X}}\right]_{a-2}$. So it is from (i) and (ii) that the Jordan type $J_{L_{1}}$ of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is

$$
J_{L_{1}}=\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}^{\vee}=(a, a-2, a-2) .
$$

Therefore, by Lemma 2.2, an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

The following proposition can be obtained using Proposition 2.7. However, we also introduce a different proof here.

Proposition 3.4. Let \mathbb{X} be a \mathbb{k}-configuration of type $(1,2)$ contained in a basic configuration \mathbb{Z} in \mathbb{P}^{2} of type (a, b) with $2 \leq b \leq a$. Define $\mathbb{Y}:=\mathbb{Z}-\mathbb{X}$. (\mathbb{X} is a set of solid 3-points in Figure 3.) Then an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

\circ	\circ	\circ	\circ	\circ	\circ	\mathbb{L}_{b}
\vdots						
\circ	\circ	\circ	\cdots	\circ	\circ	\mathbb{L}_{3}
\bullet	\circ	\circ	\cdots	\circ	\circ	\mathbb{L}_{2}
\bullet	\bullet	\circ	\cdots	\circ	\circ	\mathbb{L}_{1}
\mathbb{M}_{1}	\mathbb{M}_{2}	\mathbb{M}_{3}	\cdots	\mathbb{M}_{a-1}	\mathbb{M}_{a}	

Figure 3

Proof. First, if $a=b=2$, then it is immediate. If $a \geq 3$ and $b=2$, by Lemma 3.3 it holds.

Now suppose $a \geq b \geq 3$ and assume that \mathbb{L}_{i} is a line defined by a linear form $L_{i}=x_{0}-(i-1) x_{2}$ and \mathbb{M}_{j} is a line defined by a linear form $M_{j}=x_{1}-(j-1) x_{2}$ for i and j. Let $\wp_{i, j}$ be a point defined by two linear forms L_{i} and M_{j}. Then it is from $[9,11]$ that
$I_{\mathbb{X}}=\left(L_{1} L_{2}, L_{1} M_{1}, M_{1} M_{2}\right), \quad$ and
$I_{\mathbb{Y}}=\left(L_{1} L_{2} \cdots L_{b}, L_{2} L_{3} \cdots L_{b} M_{3} \cdots M_{a}, L_{3} \cdots L_{b} M_{2} M_{3} \cdots M_{a}, M_{1} M_{2} \cdots M_{a}\right)$.
Then an ideal $I_{\mathbb{X}}+I_{\mathbb{Y}}$ has 5 -minimal generators, i.e.,
$I_{\mathbb{X}}+I_{\mathbb{Y}}=\left(L_{1} L_{2}, L_{1} M_{1}, M_{1} M_{2}, L_{2} L_{3} \cdots L_{b} M_{3} \cdots M_{a}, L_{3} \cdots L_{b} M_{2} M_{3} \cdots M_{a}\right)$, and by [12, Theorem 2.1] the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is
(i) Assume $x_{0} L_{1}^{a+b-4}=L_{1}^{a+b-3} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a+b-3}$. Then

$$
\begin{aligned}
x_{0} L_{1}^{a+b-4}=L_{1}^{a+b-3}= & F_{1} L_{1} L_{2}+F_{2} L_{1} M_{1}+F_{3} M_{1} M_{2} \\
& +\beta_{1} L_{2} L_{3} \cdots L_{b} M_{3} \cdots M_{a}+\beta_{2} L_{3} \cdots L_{b} M_{2} M_{3} \cdots M_{a}
\end{aligned}
$$

for some $F_{i} \in R_{a+b-5}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{2} vanish on a point $\wp_{1,2}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=0$ as well. This means that

$$
x_{0} L_{1}^{a+b-4}=L_{1}^{a+b-3}=F_{1} L_{1} L_{2}+F_{2} L_{1} M_{1}+F_{3} M_{1} M_{2} \in\left[I_{\mathbb{X}}\right]_{a+b-3},
$$

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+b-2, \ldots)
$$

(ii) Similarly, it is from Lemma 3.2 that the following 3 -forms

$$
x_{0} L_{1}^{a+b-5}, x_{1} L_{1}^{a+b-5}, x_{2} L_{1}^{a+b-5}
$$

are linearly independent. In particular, the following 2 -forms

$$
x_{1} L_{1}^{a+b-5}, x_{2} L_{1}^{a+b-5}
$$

are linearly independent. Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is

$$
J_{L_{1}}=\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}^{\vee}=(a+b-2, a+b-4, a+b-4) .
$$

It is from (i) and (ii) with Lemma 2.2 that an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, which completes the proof.

We now slightly extend the previous result.
Lemma 3.5. Let \mathbb{X} be $a \mathbb{k}$-configuration of type $(1,2,3)$ in a basic configuration \mathbb{Z} in \mathbb{P}^{2} of type $(a, 3)$ with $a \geq 3$ such that $\mathbb{Y}:=\mathbb{Z}-\mathbb{X}$. (\mathbb{X} is a set of solid 6 -points in Figure 4.) Then an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

Figure 4

Proof. If $a=3$, then in Proposition 3.4, \mathbb{Z} is a basic configuration of type (3, 3) and hence, \mathbb{Y} is a set of 6 points, lemma holds. So we suppose that $a>3$. First note that the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

We assume that \mathbb{L}_{i} is a line defined by a linear form $L_{i}=x_{0}-(i-1) x_{2}$ and \mathbb{M}_{j} is a line defined by a linear form $M_{j}=x_{1}-(j-1) x_{2}$ for i and j. Let $\wp_{i, j}$ be a point defined by two linear forms L_{i} and M_{j}. Then

$$
\begin{aligned}
I_{\mathbb{X}} & =\left(L_{1} L_{2} L_{3}, L_{1} L_{2} M_{1}, L_{1} M_{1} M_{2}, M_{1} M_{2} M_{3}\right), \quad \text { and } \\
I_{\mathbb{Y}} & =\left(L_{1} L_{2} L_{3}, L_{2} L_{3} M_{4} \cdots \mathbb{M}_{a}, L_{3} M_{3} M_{4} \cdots M_{a}, M_{2} M_{3} \cdots M_{a}\right) .
\end{aligned}
$$

So an ideal $I_{\mathbb{X}}+I_{\mathbb{Y}}$ has 7 -minimal generators, i.e.,

$$
\begin{aligned}
I_{\mathbb{X}}+I_{\mathbb{Y}}= & \left(L_{1} L_{2} L_{3}, L_{1} L_{2} M_{1}, L_{1} M_{1} M_{2}, M_{1} M_{2} M_{3},\right. \\
& \left.L_{2} L_{3} M_{4} \cdots M_{a}, L_{3} M_{3} M_{4} \cdots M_{a}, M_{2} M_{3} \cdots M_{a}\right) .
\end{aligned}
$$

Note that

$$
\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}(i)=\mathbf{H}_{R / I_{\mathrm{X}}}(i)
$$

for $0 \leq i \leq a-2$.
(i) Assume $x_{0} L_{1}^{a-1}=L_{1}^{a} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a}$. Then

$$
\begin{aligned}
x_{0} L_{1}^{a-1}=L_{1}^{a}= & F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \\
& +\beta_{1} L_{2} L_{3} M_{4} \cdots M_{a}+\beta_{2} L_{3} M_{3} M_{4} \cdots M_{a}+\beta_{3} M_{2} M_{3} \cdots M_{a}
\end{aligned}
$$

for some $F_{i} \in R_{a-3}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{3} vanish on a point $\wp_{1,3}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=\beta_{3}=0$ as well. This means that
$x_{0} L_{1}^{a-1}=L_{1}^{a}=F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \in\left[I_{\mathbb{X}}\right]_{a}$,
which is a contradiction (see Lemma 3.2). Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+1, \ldots) .
$$

(ii) By the analogous argument as in (i), one can show that

$$
x_{1} L_{1}^{a-2}, x_{2} L_{1}^{a-2} \notin\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a-1} .
$$

We now suppose that

$$
\alpha x_{1} L_{1}^{a-2}+\beta x_{2} L_{1}^{a-2} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a-1}
$$

for some $\alpha, \beta \in \mathbb{k}$. Then

$$
\begin{aligned}
& \alpha x_{1} L_{1}^{a-2}+\beta x_{2} L_{1}^{a-2} \\
= & F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \\
& +\beta_{1} L_{2} L_{3} M_{4} \cdots M_{a}+\beta_{2} L_{3} M_{3} M_{4} \cdots M_{a}+\beta_{3} M_{2} M_{3} \cdots M_{a}
\end{aligned}
$$

for some $F_{i} \in R_{a-3}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{3} vanish on a point $\wp_{1,3}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=\beta_{3}=0$ as well. This means that

$$
\begin{aligned}
& \alpha x_{1} L_{1}^{a-2}+\beta x_{2} L_{1}^{a-2} \\
= & F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \in\left[I_{\mathbb{X}}\right]_{a-1} .
\end{aligned}
$$

By Lemma 3.2, we get that

$$
\alpha x_{1}+\beta x_{2}=0, \quad \text { i.e., } \quad \alpha=\beta=0,
$$

which implies that two forms

$$
x_{1} L_{1}^{a-2}, x_{2} L_{1}^{a-2}
$$

are linearly independent. Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+1, a-1, a-1, \ldots) .
$$

(iii) It is from Lemma 3.2 that

$$
x_{1}^{2} L_{1}^{a-4}, x_{1} x_{2} L_{1}^{a-4}, x_{2}^{2} L_{1}^{a-4} \notin\left[I_{\mathbb{X}}\right]_{a-2}=\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a-2}
$$

and the following set of 6 -forms

$$
\begin{aligned}
& \left\{x_{0} L_{1}^{a-3}, x_{1} L_{1}^{a-3}, x_{2} L_{1}^{a-3}, x_{1}^{2} L_{1}^{a-4}, x_{1} x_{2} L_{1}^{a-4}, x_{2}^{2} L_{1}^{a-4}\right\} \\
= & \left\{x_{0}^{2} L_{1}^{a-4}, x_{0} x_{1} L_{1}^{a-4}, x_{0} x_{2} L_{1}^{a-4}, x_{1}^{2} L_{1}^{a-4}, x_{1} x_{2} L_{1}^{a-4}, x_{2}^{2} L_{1}^{a-4}\right\}
\end{aligned}
$$

is linearly independent. In particular, the 3 -forms

$$
x_{1}^{2} L_{1}^{a-4}, x_{1} x_{2} L_{1}^{a-4}, x_{2}^{2} L_{1}^{a-4}
$$

are linearly independent. Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+1, a-1, a-1, a-3, a-3, a-3) .
$$

It is from (i) \sim (iii) that the Jordan type $J_{L_{1}}$ is

$$
J_{L_{1}}=\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}^{\vee}=(a+1, a-1, a-1, a-3, a-3, a-3) .
$$

Therefore, by Lemma 2.2, an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

Theorem 3.6. Let \mathbb{X} be $a \mathbb{k}$-configuration of type $(1,2,3)$ in a basic configuration \mathbb{Z} in \mathbb{P}^{2} of type (a, b) with $a \geq 4$ and $b \geq 3$, and let $\mathbb{Y}:=\mathbb{Z}-\mathbb{X}$. (\mathbb{X} is a set of solid 6-points in Figure 5.) Then an Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP.

Figure 5

Proof. If $b=3$, then, by Lemma 3.5, it holds. So we suppose that $b>3$. Note that, by [12, Theorem 2.1], the Hilbert function of $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ is

$$
\begin{array}{lccccccccc}
\mathbf{H}_{R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)} & : & 1 & 3 & 6 & \ldots & 6 & (a+b-5) \text {-nd } \\
& 3 & 1 & 0 .
\end{array}
$$

We assume that \mathbb{L}_{i} is a line defined by a linear form $L_{i}=x_{0}-(i-1) x_{2}$ and \mathbb{M}_{j} is a line defined by a linear form $M_{j}=x_{1}-(j-1) x_{2}$ for i and j. Let $\wp_{i, j}$ be a point defined by two linear forms L_{i} and M_{j}. Then

$$
\begin{aligned}
I_{\mathbb{X}}= & \left(L_{1} L_{2} L_{3}, L_{1} L_{2} M_{1}, L_{1} M_{1} M_{2}, M_{1} M_{2} M_{3}\right), \quad \text { and } \\
I_{\mathbb{Y}}= & \left(L_{1} L_{2} \cdots L_{b}, L_{2} \cdots L_{b} M_{4} \cdots M_{a}, L_{3} \cdots L_{b} M_{3} \cdots M_{a},\right. \\
& \left.L_{4} \cdots L_{b} M_{2} \cdots M_{a}, M_{1} M_{2} M_{3} \cdots M_{a}\right) .
\end{aligned}
$$

So an ideal $I_{\mathbb{X}}+I_{\mathbb{Y}}$ has 7 -minimal generators, i.e.,

$$
\begin{aligned}
I_{\mathrm{X}}+I_{\mathbb{Y}}= & \left(L_{1} L_{2} L_{3}, L_{1} L_{2} M_{1}, L_{1} M_{1} M_{2}, M_{1} M_{2} M_{3},\right. \\
& \left.L_{2} \cdots L_{b} M_{4} \cdots M_{a}, L_{3} \cdots L_{b} M_{3} \cdots M_{a}, L_{4} \cdots L_{b} M_{2} \cdots M_{a}\right) .
\end{aligned}
$$

Note that

$$
\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}(i)=\mathbf{H}_{R / I_{\mathrm{X}}}(i)
$$

for $0 \leq i \leq a+b-5$.
(i) Assume $x_{0} L_{1}^{a+b-4}=L_{1}^{a+b-3} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a+b-3}$. Then

$$
\begin{aligned}
x_{0} L_{1}^{a+b-4}=L_{1}^{a+b-3}= & F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \\
& +\beta_{1} L_{2} \cdots L_{b} M_{4} \cdots M_{a}+\beta_{2} L_{3} \cdots L_{b} M_{3} \cdots M_{a} \\
& +\beta_{3} L_{4} \cdots L_{b} M_{2} \cdots M_{a}
\end{aligned}
$$

for some $F_{i} \in R_{a+b-6}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{3} vanish on a point $\wp_{1,3}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=\beta_{3}=0$ as well. This means that

$$
\begin{aligned}
x_{0} L_{1}^{a+b-4} & =L_{1}^{a+b-3} \\
& =F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \in\left[I_{\mathbb{X}}\right]_{a+b-3},
\end{aligned}
$$

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{x}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+b-2, \ldots) .
$$

(ii) By the analogous argument as in (i), one can show that

$$
x_{1} L_{1}^{a+b-5}, x_{2} L_{1}^{a+b-5} \notin\left[I_{\mathbb{X}}\right]_{a+b-4}=\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a+b-4} .
$$

We now suppose that the following 3 -forms

$$
\alpha x_{0} L_{1}^{a+b-5}+\beta x_{1} L_{1}^{a+b-5}+\beta x_{2} L_{1}^{a+b-5} \in\left[I_{\mathbb{X}}+I_{\mathbb{Y}}\right]_{a+b-4}
$$

for some $\alpha, \beta, \gamma \in \mathbb{k}$, that is,

$$
\begin{aligned}
& \alpha x_{0} L_{1}^{a+b-5}+\beta x_{1} L_{1}^{a+b-5}+\beta x_{2} L_{1}^{a+b-5} \\
= & F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3}
\end{aligned}
$$

$+\beta_{1} L_{2} \cdots L_{b} M_{4} \cdots M_{a}+\beta_{2} L_{3} \cdots L_{b} M_{3} \cdots M_{a}+\beta_{3} L_{4} \cdots L_{b} M_{2} \cdots M_{a}$
for some $F_{i} \in R_{a+b-6}$ and $\beta_{j} \in \mathbb{k}$. Since two linear forms L_{1} and M_{3} vanish on a point $\wp_{1,3}$, we get that $\beta_{1}=0$. Similarly, we have $\beta_{2}=\beta_{3}=0$ as well. This means that

$$
\alpha x_{0} L_{1}^{a+b-5}+\beta x_{1} L_{1}^{a+b-5}+\beta x_{2} L_{1}^{a+b-5}
$$

$=F_{1} L_{1} L_{2} L_{3}+F_{2} L_{1} L_{2} M_{1}+F_{3} L_{1} M_{1} M_{2}+F_{4} M_{1} M_{2} M_{3} \in\left[I_{\mathbb{X}}\right]_{a+b-4}$.
Hence, Lemma 3.2, $\alpha=\beta=\gamma=0$, as we wished. This implies that the 3 -forms

$$
x_{0} L_{1}^{a+b-5}, x_{1} L_{1}^{a+b-5}, x_{2} L_{1}^{a+b-5}
$$

are linearly independent. In particular, the 2 -forms

$$
x_{1} L_{1}^{a+b-5}, x_{2} L_{1}^{a+b-5}
$$

are linearly independent. Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+b-2, a+b-4, a+b-4, \ldots)
$$

(iii) It is from Lemma 3.2 that the following 6 -forms
$x_{0}^{2} L_{1}^{a+b-7}, x_{0} x_{1} L_{1}^{a+b-7}, x_{0} x_{2} L_{1}^{a+b-7}, x_{1}^{2} L_{1}^{a+b-7}, x_{1} x_{2} L_{1}^{a+b-7}, x_{2}^{2} L_{1}^{a+b-7}$
are linearly independent. In particular, the following 3 -forms

$$
x_{1}^{2} L_{1}^{a+b-7}, x_{1} x_{2} L_{1}^{a+b-7}, x_{2}^{2} L_{1}^{a+b-7}
$$

are linearly independent. Hence the Jordan type of $\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}$ is of the form

$$
J_{L_{1}}=(a+b-2, a+b-4, a+b-4, a+b-6, a+b-6, a+b-6) .
$$

It is from (i) \sim (iii) that the Jordan type $J_{L_{1}}$ is
$\mathbf{H}_{R /\left(I_{\mathrm{X}}+I_{\mathrm{Y}}\right)}^{\vee}=(a+b-2, a+b-4, a+b-4, a+b-6, a+b-6, a+b-6)$.
Therefore, by Lemma 2.2, an Artinian \mathbb{k}-configuration quotient $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the SLP, which completes the proof of this theorem.

Remark 3.7. Theorem 3.6 has been proved if \mathbb{X} is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2)$ or $(1,2,3)$ in a basic configuration in \mathbb{P}^{2}. However, if \mathbb{X} is a \mathbb{k} configuration in \mathbb{P}^{2} of type $(1,2, \ldots, d)$ in a basic configuration in \mathbb{P}^{2} with $d \geq 4$, then it cannot be proved by the same method as in the proof of Theorem 3.6.

References

[1] J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in \mathbb{P}^{n} and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
[2] E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20.
[3] E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192.
[4] M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in \mathbb{P}^{n}, J. of Alg. Geo. submitted.
[5] M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443.
[6] A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in \mathbb{P}^{n}, J. Algebra 376 (2013), 279-299.
[7] A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
[8] A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
[9] A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
[10] A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \mathbb{P}^{2}, J. Algebra 298 (2006), no. 2, 563-611.
[11] A. V. Geramita and Y. S. Shin, k-configurations in \mathbb{P}^{3} all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368.
[12] T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324.
[13] T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi, and J. Watanabe, The Lefschetz Properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013.
[14] T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126.
[15] Y. R. Kim and Y. S. Shin, Star-configurations in \mathbb{P}^{n} and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873.
[16] J. Migliore and R. Miró-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107.
[17] , On the strong Lefschetz problem for uniform powers of general linear forms in $k[x, y, z]$, Proc. Amer. Math. Soc. 146 (2018), no. 2, 507-523.
[18] J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358.
[19] J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in \mathbb{P}^{n}, J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133.
[20] Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
[21] \qquad , Star-configurations in \mathbb{P}^{2} having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242.
[22] , Some application of the union of two \mathbb{k}-configurations in \mathbb{P}^{2}, J. of Chungcheong Math. Soc. 27 (2014), no. 3, 413-418.

Young Rock Kim
Major in Mathematics Education
Graduate School of Education
Hankuk University of Foreign Studies
Seoul 02450, Korea
Email address: rocky777@hufs.ac.kr
Yong-Su Shin
Department of Mathematics
Sungshin Women's University
Seoul 02844, Korea
Email address: ysshin@sungshin.ac.kr

[^0]: Received January 7, 2017; Revised February 20, 2018; Accepted March 27, 2018.
 2010 Mathematics Subject Classification. Primary 13A02; Secondary 16W50.
 Key words and phrases. Hilbert functions, star-configurations, linear star-configurations, the weak-Lefschetz property, the strong-Lefschetz property.
 ${ }^{\dagger}$ This research was supported by the Basic Science Research Program of the NRF (Korea) under grant No. 2015R1D1A1A01059643/2.
 \ddagger This research was supported by the Basic Science Research Program of the NRF (Korea) under grant No. 2016R1D1A1B03931683/2.

