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AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND

THE STRONG LEFSCHETZ PROPERTY

Young Rock Kim† and Yong-Su Shin‡

Abstract. In this paper, we study an Artinian point-configuration quo-
tient having the SLP. We show that an Artinian quotient of points in P

n

has the SLP when the union of two sets of points has a specific Hilbert
function. As an application, we prove that an Artinian linear star con-
figuration quotient R/(IX + IY) has the SLP if X and Y are linear star-

configurations in P
2 of type s and t for s ≥

(

t

2

)

− 1 and t ≥ 3. We also

show that an Artinian k-configuration quotient R/(IX + IY) has the SLP
if X is a k-configuration of type (1, 2) or (1, 2, 3) in P

2, and X ∪ Y is a
basic configuration in P

2.

1. Introduction

Ideals of sets of finite points in P
n have been studied for a long time ([8,9,11]),

and in particular we consider an ideal of a special configuration in P
n, so called

a star-configuration and a k-configuration in P
n ([1–3, 6, 7, 9–11, 15]). In 2006,

Geramita, Migliore, and Sabourin introduced the notion of a star-configuration
set of points in P

2 (see [10]), the name having been inspired by the fact that
10-points in P

2, defined by 5 general linear forms in k[x0, x1, x2] resembles a
star. In this paper, we refer to this as a “linear star-configuration”, as more
general definition of star-configurations has evolved through the subsequent
literature (see [1,6,7,19]). Indeed, a star-configuration in P

n has been studied
to find the dimension of secant varieties to the variety of reducible forms in
R = k[x0, x1, . . . , xn], where k is a field of characteristic 0 (see [4, 5, 20]).

If R/I is a standard graded Artinian algebra and ℓ is a general linear form,
we recall that R/I is said to have the weak Lefschetz property (WLP) if the
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multiplication map by ℓ

[R/I]d
×ℓ
→ [R/I]d+1

has maximal rank for every d ≥ 0. Over the years, there have been several
papers which have devoted to a classification of possible Artinian quotients
having the WLP (see [1,8,9,13,14,16–18,21,22]). The strong Lefschetz property
(SLP) says that for every i ≥ 1 the multiplication map by ℓi

[R/I]d
×ℓi

→ [R/I]d+i

has maximal rank for every d ≥ 0 ([13, 14, 17]). In [14] the authors proved
that a complete intersection ideal in k[x0, x1] has the SLP. Moreover, in [13],
the authors give a nice description for a graded Artinian ring having the SLP
by using the so-called Jordan type (see Lemma 2.2). The Jordan type is the
partition of n specifying the lengths of blocks in the Jordan block matrix de-
termined by the multiplication map by ℓ in a suitable k-basis for R/I. Here,
we apply this result often to show that some Artinian quotients of the ideals
of points in P

n have the SLP.
We use Hilbert functions for many our arguments. Given a homogeneous

ideal I ⊂ R, the Hilbert function of R/I, denoted HR/I , is the numerical

function HR/I : Z+ ∪ {0} → Z
+ ∪ {0} defined by

HR/I(i) := dimk[R/I]i = dimk[R]i − dimk[I]i,

where [R]i and [I]i denote the i-th graded component of R and I, respectively.
If I := IX is the defining ideal of a subscheme X in P

n, then we denote

HR/IX(i) := HX(i) for i ≥ 0,

and call it the Hilbert function of X.
Let R = k[x0, x1, . . . , xn] be a polynomial ring over a field k of characteristic

0. For positive integers r and s with 1 ≤ r ≤ min{n, s}, suppose F1, . . . , Fs

are general forms in R of degrees d1, . . . , ds, respectively. Here s general forms
F1, . . . , Fs in R means that all subsets of size 1 ≤ r ≤ min{n + 1, s} are
regular sequences in R, and if H = {F1, . . . ,Fs} is a collection of distinct
hypersurfaces in P

n corresponding to general F1, . . . , Fs respectively, then the
hypersurfaces meet properly, by which we mean that the intersection of any r
of these hypersurfaces with 1 ≤ r ≤ min{n, s} has codimesion r. We call the
variety X defined by the ideal

⋂

1≤i1<···<ir≤s

(Fi1 , . . . , Fir )

a star-configuration in P
n of type (r, s). In particular, if X is a star-configuration

in P
n of type (n, s), then we simply call a point star-configuration in P

n of type
s for short.
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Notice that each n-forms Fi1 , . . . , Fin of s-general forms F1, . . . , Fs in R
define di1 · · · din points in P

n for each 1 ≤ i1 < · · · < in ≤ s. Thus the ideal
⋂

1≤i1<···<in≤s

(Fi1 , . . . , Fin)

defines a finite set X of points in P
n with

deg(X) =
∑

1≤i1<i2<···<in≤s

di1di2 · · · din .

Furthermore, if F1, . . . , Fs are general linear (quadratic, cubic, quartic, quin-
tic, etc) forms in R, then we call X a linear (quadratic, cubic, quartic, quintic,
etc) star-configuration in P

n of type s, respectively.
To provide some additional focus to this paper, we consider the following

questions.

Question 1.1. Let X and Y be finite sets of points in P
n and R = k[x0, x1, . . . ,

xn].

(a) Does an Artinian ring R/(IX + IY) have the WLP?
(b) Does an Artinian ring R/(IX + IY) have the SLP?

Question 1.2. More precisely, let X and Y be finite point star configurations
in P

n, or X be a k-configuration in P
n such that X∪Y is a basic configuration

in P
n.

(a) Does an Artinian ring R/(IX + IY) have the WLP?
(b) Does an Artinian ring R/(IX + IY) have the SLP?

In [1], the authors proved that an Artinian linear star-configuration quotient
in P

2 has the WLP, which is a partial answer to Question 1.2(a). Indeed, it is
still true that any finite number of an Artinian linear point star-configuration
quotient in P

n has the WLP. In [8,9], the authors show that Question 1.2(a) is
true in general if X is a k-configuration in P

n and X∪Y is a basic configuration
in P

n with the condition 2σ(X) ≤ σ(X ∪ Y), where

σ(X) = min{i | HX(i− 1) = HX(i)}.

In this paper, we focus on Questions 1.1(b) and 1.2(b). More precisely, we
first find a condition in which an Artinian quotient of two sets of points in
P
n has the SLP (see Lemma 2.4 and Proposition 2.5). Next we find some

Artinian linear star configuration quotient in P
2 that has the SLP (see Corol-

lary 2.9). Then, we find an Artinian k-configuration quotient having the SLP
(see Proposition 3.4 and Theorem 3.6). Unfortunately, we do not have any
counter example of an Artinian quotient R/(IX + IY) of two point sets in P

n,
which does not have the SLP, and thus we expect Question 1.1(a) and (b) are
true in general, especially when X and Y are sets of general points in P

n.
Acknowledgement. We took inspiration for this subject from Professor An-
thony Iarrobino during the Research Station on Commutative Algebra, June
13-18, 2016, which was supported by the Korea Institute of Advanced Study.
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2. Artinian linear star-configuration quotients in P
2

In this section, we shall show that an Artinian ring R/(IX+ IY) has the SLP
if X and Y are linear star-configurations in P

2 of type s and t with s ≥
(
t
2

)
− 1

and t ≥ 3, respectively.
We first introduce the following two results of a star-configuration in P

n in
[13, 22].

Remark 2.1. Let k be a field of characteristic zero and let F ∈ k[x0, x1, . . . , xn]
= R =

⊕

i≥0 Ri (n ≥ 1) be a homogeneous polynomial (form) of degree d, i.e.,
F ∈ Rd. It is well known that in this case each Ri has a basis consisting of i-th
powers of linear forms. Thus we may write

F =
r∑

i=1

αiL
d
i , αi ∈ k, Li ∈ R1.

If k is algebraically closed (which we now assume for the rest of the paper),
then each αi = βd

i for some βi ∈ k and so we can write

(2.1) F =
r∑

i=1

(βiLi)
d =

r∑

i=1

Md
i , Mi ∈ R1.

We call a description of F as in equation (2.1), a Waring Decomposition of F .
The least integer r such that F has a Waring Decomposition with exactly r
summands is called the Waring Rank (or simply the rank) of F .

Lemma 2.2 ([13]). Assume A is graded and HA is unimodal. Then

(a) A has the WLP if and only if the number of parts of the Jordan type

Jℓ = max{HA(i)}. (The Sperner number of A);
(b) ℓ is a strong Lefschetz element of A if and only if Jℓ = H∨

A.

Proposition 2.3 ([22, Proposition 2.5]). Let X and Y be linear star-configura-

tions in P
2 of type s and t, respectively, with 3 ≤ t and s ≥ ⌊ 1

2

(
t
2

)
⌋. Then X∪Y

has generic Hilbert function.

Recall that

HA : h0 h1 · · · · · · hc

is said to be unimodal if there exists j such that
{

hi ≤ hi+1 (i < j),

hi ≥ hi+1 (j ≤ i).

Lemma 2.4. Let X be a finite set of points in P
n and let A be an Artinian

quotient of the coordinate ring of X. Assume that HA(i) = HX(i) for every

0 ≤ i ≤ s− 1 and As = 0. Then an Artinian ring A has the SLP.

Proof. First, we assume that the Hilbert function of A is of the form

HA : h0 h1 · · · hσ−1 hσ · · · hs−1 0,
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where hσ−2 < hσ−1 = hσ = · · · = hs−1.
Let ℓ be a general linear form in A1. Since ℓ is not a zero divisor of A, we

see that the multiplication map by ℓs−1

[R/IX]0 = [A]0
×ℓs−1

−→ [A]s−1 = [R/IX]s−1

is injective. Hence we have a string of length s

1, ℓ, . . . , ℓs−1,

and so the Jordan type Jℓ for HA is of the form

Jℓ = (s, . . . ).

(i) Let i = 1. Then the multiplication map by ℓs−2

[R/IX]1 = [A]1
×ℓs−2

−→ [A]s−1 = [R/IX]s−1

is injective. Hence there are g1 := (h1 − h0) = (h1 − 1) linear forms
F1,1, F1,2, . . . , F1,g1 ∈ [A]1 such that the h1 linear forms

ℓ, F1,1, F1,2, . . . , F1,g1

are linearly independent. Hence there are g1-strings of length (s− 1)

F1,1, F1,1ℓ, . . . , F1,1ℓ
s−2, and

F1,2, F1,2ℓ, . . . , F1,2ℓ
s−2,

...
F1,g1 , F1,g1ℓ, . . . , F1,g1ℓ

s−2.

(ii) For 1 ≤ i < σ − 1 and 1 ≤ j ≤ i, define

gj := hj − hj−1

for such j. Assume that there are gj-forms Fj,1, . . . , Fj,gj ∈ [A]j and there
are gj-strings of length (s− j)

Fj,1, Fj,1ℓ, . . . , Fj,1ℓ
s−j−1,

Fj,2, Fj,2ℓ, . . . , Fj,2ℓ
s−j−1,

...
Fj,gj , Fj,gj ℓ, . . . , Fj,gj ℓ

s−j

such that the
(
1 +

∑j
k=1 gk

)
-forms

ℓj , F1,1ℓ
j−1, . . . , F1,g1ℓ

j−1

︸ ︷︷ ︸

g1-forms

, . . . , Fj−1,1ℓ, . . . , Fj−1,gj−1 ℓ
︸ ︷︷ ︸

gj−1-forms

, Fj,1, . . . , Fj,gj
︸ ︷︷ ︸

gj-forms

are linearly independent for such j.
Since the multiplication map by ℓ(s−1)−(i+1)

[R/IX]i+1 = [A]i+1
×ℓ(s−1)−(i+1)

−→ [A]s−1 = [R/IX]s−1
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is injective, there are linearly independent gi+1 := (hi+1 − hi)-forms

Fi+1,1, . . . , Fi+1,gi+1 ∈ [A]i+1. Then the following
(
1 +

∑i+1
k=1 gk

)
-forms

ℓi+1, F1,1ℓ
i, . . . , F1,g1ℓ

i

︸ ︷︷ ︸

g1-forms

, . . . , Fi−1,1ℓ
2, . . . , Fi−1,gi−1ℓ

2

︸ ︷︷ ︸

gi−1-forms

, Fi,1ℓ, . . . , Fi,giℓ
︸ ︷︷ ︸

gi-forms

, Fi+1,1, . . . , Fi+1,gi+1
︸ ︷︷ ︸

gi+1-forms

are linearly independent as well. Hence we have gi+1-strings of length
(s− i− 1)

Fi+1,1, Fi+1,1ℓ, . . . , Fi+1,1ℓ
s−i−2,

Fi+1,2, Fi+1,2ℓ, . . . , Fi+1,2ℓ
s−i−2,

...
Fi+1,gi+1 , Fi+1,gi+1ℓ, . . . , Fi+1,gi+12ℓ

s−i−2.

It is from (i) ∼ (ii) that the Jordan type

Jℓ = (s, s− 1, . . . , s− 1
︸ ︷︷ ︸

g1-times

, . . . , s− i, . . . , s− i
︸ ︷︷ ︸

gi-times

, . . . , s− σ + 1, . . . , s− σ + 1
︸ ︷︷ ︸

gσ−1-times

) = H∨
A,

as we wished. Therefore, by Lemma 2.2, an Artinian ring has the SLP, which
completes the proof. �

The following proposition is immediate from Lemma 2.4.

Proposition 2.5. Let X and Y be linear star-configurations in P
2 of type t

and s with t ≥ 2 and s ≥
(
t
2

)
. Then an Artinian ring R/(IX+ IY) has the SLP.

Proof. First, note that the Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY)
(see Proposition 2.3) are

HR/IX : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t
2

)
→,

HR/IY : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (
s
2

)
→,

HR/(IX∩IY) : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

)
(s−1)-st

(
s+1
2

)
=

(
s
2

)
+
(
t
2

)
→,

respectively. Using the exact sequence

0 → R/(IX ∩ IY) → R/IX ⊕R/IY → R/(IX + IY) → 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·
(t−2)-nd
(
t
2

)
· · ·

(s−2)-nd
(
t
2

)
0 →,

and so by Lemma 2.4, an Artinian linear star configuration quotient R/(IX+IY)
has the SLP, which completes the proof. �

Example 2.6. Let X and Y be linear star-configurations in P
2 of type 5 and

9, respectively. Note that 9 =
(
5
2

)
− 1. By Proposition 2.3 the Hilbert function

of an Artinian ring A := R/(IX + IY) is

(1, 3, 6, 10, 10, 10, 10, 10,
8-th
1 ).
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(a) By Waring decomposition, there is a general linear form ℓ ∈ [A]1 such that

ℓ8 ∈ [A]8,

i.e., we have a string of length 9

1, ℓ, . . . , ℓ8.

Hence the Jordan type Jℓ is of the form

Jℓ = (9, . . . ).

(b) Note that the multiplication map by ℓ6

[A]1
×ℓ6
→ [A]7

is injective, and the multiplication map by ℓ7

[A]1
×ℓ7

→ [A]8

is surjective. Then we can choose a basis {ℓ, F1,1, F1,2} for [A]1 such that

F1,1ℓ
6, F1,2ℓ

6 6= 0, and F1,1ℓ
7, F1,2ℓ

7 = 0.

Moreover, since {F1,1ℓ
6, F1,2ℓ

6} is linearly independent, we have 2-strings
of length 7

F1,1, F1,1ℓ, . . . , F1,1ℓ
6, and

F1,2, F1,2ℓ, . . . , F1,2ℓ
6.

(c) Note that the multiplication map by ℓ5

[A]2
×ℓ5
→ [A]7

is injective, and the multiplication map by ℓ6

[A]2
×ℓ6
→ [A]8

is surjective. Then we can choose a basis {ℓ2, F1,1ℓ, F1,2ℓ, F2,1, F2,2, F2,3}
for [A]2 such that

F2,1ℓ
5, F2,2ℓ

5, F2,3ℓ
5 6= 0, and F2,1ℓ

6, F2,2ℓ
6, F2,3ℓ

6 = 0.

Moreover, since {F2,1ℓ
5, F2,2ℓ

5, F2,3ℓ
5} is linearly independent, we have 3-

strings of length 6

F2,1, F2,1ℓ, . . . , F2,1ℓ
5,

F2,2, F2,2ℓ, . . . , F2,2ℓ
5, and

F2,3, F2,3ℓ, . . . , F2,3ℓ
5.

(d) Note that the multiplication map by ℓ4

[A]3
×ℓ4

→ [A]7

is injective, and the multiplication map by ℓ6

[A]3
×ℓ5
→ [A]8
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is surjective. Then we can choose a basis {ℓ3, F1,1ℓ
2, F1,2ℓ

2, F2,1ℓ, F2,2ℓ,
F2,3ℓ, F3,1, . . . , F3,4} for [A]3 such that

F3,1ℓ
4, . . . , F3,4ℓ

4 6= 0, and F3,1ℓ
5, . . . , F3,4ℓ

5 = 0.

Moreover, since {F3,1ℓ
4, . . . , F3,4ℓ

4} is linearly independent, we have 4-
strings of length 5

F3,1, F3,1ℓ, . . . , F3,1ℓ
4,

F3,2, F3,2ℓ, . . . , F3,2ℓ
4,

F3,3, F3,3ℓ, . . . , F3,3ℓ
4, and

F3,4, F3,4ℓ, . . . , F3,4ℓ
4.

This shows that the Jordan type of HR/(IX+IY) is

Jℓ = (9, 7, 7, 6, 6, 6, 5, 5, 5, 5) = H∨
R/(IX+IY)

.

Thus, by Lemma 2.2, an Artinian quotient of two linear star-configurations in
P
2 of type 5 and 9 has the SLP, as we wished.

Example 2.6 motivates the following proposition.

Proposition 2.7. Let X be a finite set of points in P
n and let A be an Artinian

quotient of the coordinate ring of X. Assume that HA(i) = HX(i) for every

0 ≤ i ≤ s− 2 with As = 0, and the Hilbert function of A is of the form

HA : h0 h1 · · · hσ−1 hσ · · ·
(s−2)-nd

hσ hs−1 0

where hσ−2 < hσ−1 = hσ and hs−1 = 1. Then an Artinian ring A has the

SLP.

Proof. We first define

gi := hi − hi−1 for i = 1, . . . , σ − 1.

(a) By Waring decomposition, there is a linear form ℓ ∈ [A]1 such that

ℓs−1 ∈ [A]s−1.

In other words, there is a string of length s as

1, ℓ, . . . , ℓs−1.

Hence Jordan type of HR/(IX+IY) is of the form

Jℓ = (s, . . . ).

(b) Note that the multiplication map by ℓs−3

[R/IX]1 = [A]1
×ℓs−3

→ [A]s−2 = [R/IX]s−2

is injective, and the multiplication map by ℓs−2

[A]1
×ℓs−2

→ [A]s−1
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is surjective. Then we can choose a basis {ℓ, F1,1, F1,2, . . . , F1,g1} for [A]1
such that

F1,1ℓ
s−3, F1,2ℓ

s−3, . . . , F1,g1ℓ
s−3 6= 0, and F1,1ℓ

s−2, F1,2ℓ
s−2, . . . , F1,g1ℓ

s−2=0.

Moreover, since {F1,1ℓ
s−3, F1,2ℓ

s−3, . . . , F1,g1ℓ
s−3} is linearly independent,

we have g1-strings of length (s− 2)

F1,1, F1,1ℓ, . . . , F1,1ℓ
s−3,

F1,2, F1,2ℓ, . . . , F1,2ℓ
s−3,

...
F1,g1−1, F1,g1−1ℓ, . . . , F1,g1−1ℓ

s−3, and
F1,g1 , F1,g1ℓ, . . . , F1,g1ℓ

s−3.

This means that Jordan type of HR/(IX+IY) is of the form

Jℓ = (s, s− 2, . . . , s− 2
︸ ︷︷ ︸

g1-times

, . . . ).

(c) Let 1 ≤ i ≤ σ − 1. Note that the multiplication map by ℓs−i−2

[R/IX]i = [A]i
×ℓs−i−2

→ [A]s−2 = [R/IX]s−2

is injective, and the multiplication map by ℓs−i−1

[R/IX]i = [A]i
×ℓs−i−1

→ [A]s−1

is surjective. Then we can choose a basis Bi

Bi =
{
ℓi, F1,1ℓ

i−1, . . . , F1,g1ℓ
i−1

︸ ︷︷ ︸

g1-times

, F2,1ℓ
i−2, . . . , F2,g2ℓ

i−2

︸ ︷︷ ︸

g2-times

, . . . ,

Fi−1,1ℓ, . . . , Fi−1,gi−1ℓ
︸ ︷︷ ︸

gi−1-times

, Fi,1, . . . , Fi,gi
︸ ︷︷ ︸

gi-times

}

for [A]i such that

Fi,1ℓ
s−i−2, . . . , Fi,giℓ

s−i−2 6= 0, and Fi,1ℓ
s−i−1, . . . , Fi,giℓ

s−i−1 = 0.

Moreover, since {Fi,1ℓ
s−i−2, . . . , Fi,giℓ

s−i−2} is linearly independent, we
have gi-strings of length (s− i− 1)

Fi,1, Fi,1ℓ, . . . , F s−i−2
i,1 ,

Fi,2, Fi,2ℓ, . . . , F s−i−2
i,2 ,

...

Fi,g1−1, Fi,g1−1ℓ, . . . , F s−i−2
i,g1−1 , and

Fi,gi , Fi,giℓ, . . . , Fi,giℓ
s−i−2.

Hence Jordan type of HR/(IX+IY) is of the form

Jℓ =
(
s, s− 2, s− 2, . . . , s− 2
︸ ︷︷ ︸

g1-times

, . . . , s− i− 1, s− i− 1, . . . , s− i− 1
︸ ︷︷ ︸

gi-times

, . . . )
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for such i.

It is from (a) ∼ (c) that the Jordan type Jℓ of HR/(IX+IY) is

Jℓ = HR/(IX+IY)∨

=
(
s, s− 2, s− 2, . . . , s− 2
︸ ︷︷ ︸

g1-times

, . . . , s− i− 1, s− i− 1, . . . , s− i− 1
︸ ︷︷ ︸

gi-times

, . . . ,

s− σ, s− σ, . . . , s− σ
︸ ︷︷ ︸

gσ−1-times

)
.

Therefore, by Lemma 2.2, an Artinian ring R/(IX + IY) has the SLP, as we
wished. �

The following two corollaries are immediate from Proposition 2.7.

Corollary 2.8. Let X and Y be finite sets of general points in P
n with n ≥ 2

and s ≥ t ≥ n. Assume that
(
s

n

)

≤ deg(X) <

(
s+ 1

n

)

,

(
t

n

)

≤ deg(Y) <

(
t+ 1

n

)

,

and

deg(X) + deg(Y) =

(
s+ 1

n

)

+ 1.

Then an Artinian ring R/(IX + IY) has the SLP.

Proof. Since X and Y are finite sets of general points in P
n, we get that the

Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY) are

HR/IX : 1
(
1+n
n

)
· · ·

(t−n)-th
(
t
n

) (
t+1
n

)
· · ·

(s−n)-th(
s
n

)
deg(X) →,

HR/IY : 1
(
1+n
n

)
· · ·

(t−n)-th
(
t
n

)
deg(Y) · · · deg(Y) deg(Y) →,

HR/(IX∩IY) : 1
(
1+n
n

)
· · ·

(t−n)-th
(
t
n

) (
t+1
n

)
· · ·

(s−n)-th(
s
n

) (
s+1
n

)
=

[
deg(X) + deg(Y)

]
− 1 →,

respectively. Using the exact sequence

0 → R/(IX ∩ IY) → R/IX ⊕R/IY → R/(IX + IY) → 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·
(t−n)-th
(
t
n

)
deg(Y) · · ·

(s−n)-th

deg(Y) 1 →,

and so by Proposition 2.7, an Artinian ring R/(IX + IY) has the SLP, which
completes the proof. �

Corollary 2.9. Let X and Y be linear star-configurations in P
2 of type s and t

with s ≥
(
t
2

)
−1 and t ≥ 3. Then an Artinian linear star-configuration quotient

R/(IX + IY) has the SLP.
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Proof. By Proposition 2.5, it holds for s ≥
(
t
2

)
. So we assume that s =

(
t
2

)
− 1.

First note that
[
deg(X) + deg(Y)

]
−

(
s+ 1

2

)

=

[(
s

2

)

+

(
t

2

)]

−

(
s+ 1

2

)

=

[(
s

2

)

+ s+ 1

]

−

(
s+ 1

2

)

= 1.

Hence the Hilbert functions of R/IX, R/IY, and R/(IX ∩ IY) (see Proposi-
tion 2.3) are

HR/IX : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

) (
s
2

)
→,

HR/IY : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t
2

)
· · ·

(
t
2

) (
t
2

)
→,

HR/(IX∩IY) : 1 3 · · ·
(t−2)-nd
(
t
2

) (
t+1
2

)
· · ·

(s−2)-nd(
s
2

)
(s−1)-st

(
s+1
2

)
=

[(
s
2

)
+
(
t
2

)]
− 1 →,

respectively. Using the exact sequence

0 → R/(IX ∩ IY) → R/IX ⊕R/IY → R/(IX + IY) → 0,

the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 · · ·

(t−2)-nd(
t

2

)

· · ·

(s−2)-nd(
t

2

)

1 →,

and so by Proposition 2.7, an Artinian linear star-configuration quotient
R/(IX + IY) has the SLP, as we wished. �

3. Artinian k-configuration quotients in P
2

In this section, we shall introduce another Artinian quotient having the SLP.
We first recall a definition of a k-configuration in P

2 and some preliminary
result.

Definition 3.1. A k-configuration of points in P
2 is a finite set X of points in P

2

which satisfy the following conditions: there exist integers 1 ≤ d1 < · · · < dm,
and subsets X1, . . . ,Xm of X, and distinct lines L1, . . . ,Lm ⊆ P

2 such that

(a) X =
⋃m

i=1 Xi,
(b) |Xi| = di and Xi ⊂ Li for each i = 1, . . . ,m, and
(c) Li (1 < i ≤ m) does not contain any points of Xj for all j < i.

In this case, the k-configuration in P
2 is said to be of type (d1, . . . , dm).

Recall that a finite complete intersection set of points Z in P
n is said to be

a basic configuration in P
n (see [11, 12]) if there exist integers r1, . . . , rn and

distinct hyperplanes Lij(1 ≤ i ≤ n, 1 ≤ j ≤ ri) such that

Z = H1 ∩ · · · ∩Hn as schemes, where Hi = Li1 ∪ · · · ∪ Liri .

In this case Z is said to be of type (r1, . . . , rn).

Before we prove our main theorem, we first introduce two lemmas.
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Lemma 3.2. Let X be a k-configuration in P
2 of type (1, 2, . . . , d) (see Fig-

ure 1), and let Li and Mj be lines in P
2 defined by linear forms x0 − (i− 1)x2

and x1 − (j − 1)x2 for 1 ≤ i, j ≤ d − 1, respectively. Then the multiplication

map by L1 := x0

[R/IX]i
×L1→ [R/IX]i+1

is injective for i ≥ 0. In particular, for j ≥ 1, the multiplication map by Lj
1

[R/IX]i
×Lj

1→ [R/IX]i+j

is injective for every i ≥ 0.

• Ld

• • Ld−1

...
... ·

...

• • • · L3

• • • · · · • L2

• • • · · · • • L1

M1 M2 M3 · · · Md−1 Md

Figure 1

Proof. If d = 1, then X is a set of a single point in P
2, so it is immediate. Hence

we assume that d > 1.

Note that

IX=(L1 · · ·Ld,M1L2 · · ·Ld,M1M2L3 · · ·Ld, . . . ,M1 · · ·Md−1Ld,M1M2 · · ·Md)

(see [9, 11]) and the Hilbert function of R/IX is

HX : 1

(
1 + 2

2

)

· · ·

(d−1)-st(
(d− 1) + 2

2

) (
d+ 1

2

)

→

(see Theorems 2.7 and 3.6 in [9]).
First, it is obvious that the multiplication map by L1 := x0

[R/IX]i
×L1→ [R/IX]i+1

is injective for 0 ≤ i ≤ d− 2.

Let i = d− 1 = j1 + j2 + j3 with 0 ≤ j1, j2, j3 ≤ d.

(i) Assume j2 = 0 and

xj1
0 xj3

2 L1 ∈ [IX]d = 〈L1 · · ·Ld,M1L2 · · ·Ld,M1M2L3 · · ·Ld, . . . ,

M1 · · ·Md−1Ld,M1M2 · · ·Md〉,

that is,

xj1
0 xj3

2 L1 = α1L1 · · ·Ld + α2M1L2 · · ·Ld + α3M1M2L3 · · ·Ld + · · ·
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+ αdM1 · · ·Md−1Ld + αd+1M1M2 · · ·Md

for some αi ∈ k. Let ℘i,j be a point defined by two linear forms Li and
Mj. Since two linear forms L1 and M2 vanish on a point ℘1,2, we get that

α2 = 0.

Moreover, since two forms L1 and M3 vanish on a point ℘1,3, we have

α3 = 0.

By continuing this procedure, one can show that

α2 = · · · = αd = 0.

Hence

xj1
0 xj3

2 L1 = α1L1 · · ·Ld + αd+1M1M2 · · ·Md,

that is,

L1 | αd+1M1M2 · · ·Md and so, αd+1 = 0.

It follows that

xj1
0 xj3

2 L1 = α1L1 · · ·Ld, and thus, α1 = 0.

(ii) Assume j2 > 0 and

xj1
0 xj2

1 xj3
2 L1 = α1L1 · · ·Ld + α2M1L2 · · ·Ld + α3M1M2L3 · · ·Ld

+ · · ·+ αdM1 · · ·Md−1Ld + αd+1M1M2 · · ·Md

for some αi ∈ k. Recall that M1 := x1. Thus

M1 | α1L1 · · ·Ld, and hence, α1 = 0.

By the analogous argument as in (i), one can show that

α2 = · · · = αd = αd+1 = 0.

It is from (i) and (ii) that

xj1
0 xj2

1 xj3
2 L1 /∈ [IX]d,

which means that the multiplication map by L1

[R/IX]d−1
×L1→ [R/IX]d

is injective, and surjective as well. Thus the multiplication map by L1

[R/IX]i
×L1→ [R/IX]i+1

is injective and surjective for every i ≥ d− 1, as we wished.

So it follows that the multiplication map by Lj
1

[R/IX]i
×Lj

1→ [R/IX]i+j

is injective for every i ≥ 0. This completes the proof. �
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The following lemma is immediate from Proposition 2.7. But we introduce
another elementary proof here.

Lemma 3.3. Let X be a k-configuration in P
2 of type (1, 2) in a basic con-

figuration Z in P
2 of type (a, 2) with a ≥ 2, and let Y := Z − X, (X is a set

of solid 3-points in Z in Figure 2). Then an Artinian k-configuration quotient

R/(IX + IY) has the SLP.

• ◦ ◦ · · · ◦ ◦ L2

• • ◦ · · · ◦ ◦ L1

M1 M2 M3 · · · Ma−1 Ma

Figure 2

Proof. First, if a = 2, then the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 1 0,

(see [12, Theorem 2.1]) and so it follows that R/(IX + IY) has the SLP.
Now suppose a ≥ 3 and assume that Li and Mj are lines defined by linear

forms Li = x0 − (i − 1)x2 and Mj = x1 − (j − 1)x2 for i and j, respectively.
Let ℘i,j be a point defined by two linear forms Li and Mj. Then

IX = (L1L2, L1M1,M1M2),

IY = (L1L2, L2M3M4 · · ·Ma,M2M3M4 · · ·Ma)

(see [9, 11]) and an ideal IX + IY has 5-minimal generators, i.e.,

IX + IY = (L1L2, L1M1,M1M2, L2M3M4 · · ·Ma,M2M3M4 · · ·Ma).

By [12, Theorem 2.1], the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 3 · · ·
(a−2)-nd

3 1 0 → .

Note that
HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a− 2.

(i) Assume x0L
a−2
1 = La−1

1 ∈ [IX + IY]a−1. Then

x0L
a−2
1 = La−1

1 = F1L1L2 + F2L1M1 + F3M1M2 + β1L2M3M4 · · ·Ma

+ β2M2M3M4 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M2 vanish
on a point ℘1,2, we get that β1 = 0. Similarly, we have β2 = 0 as well.
This means that

x0L
a−2
1 = La−1

1 = F1L1L2 + F2L1M1 + F3M1M2 ∈ [IX]a−1,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a, . . . ).
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(ii) Similarly, it is from Lemma 3.2 that

x1L
a−3
1 , x2L

a−3
1 /∈ [IX]a−2 = [IX + IY]a−2.

Furthermore, it is obvious that two forms x1L
a−3
1 , x2L

a−3
1 are linearly inde-

pendent in [R/(IX + IY)]a−2 = [R/IX]a−2. So it is from (i) and (ii) that the
Jordan type JL1 of HR/(IX+IY) is

JL1 = H∨
R/(IX+IY)

= (a, a− 2, a− 2).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP. �

The following proposition can be obtained using Proposition 2.7. However,
we also introduce a different proof here.

Proposition 3.4. Let X be a k-configuration of type (1, 2) contained in a basic

configuration Z in P
2 of type (a, b) with 2 ≤ b ≤ a. Define Y := Z − X. (X is

a set of solid 3-points in Figure 3.) Then an Artinian k-configuration quotient

R/(IX + IY) has the SLP.

◦ ◦ ◦ ◦ ◦ ◦ Lb

...
...

...
...

...
...

...

◦ ◦ ◦ · · · ◦ ◦ L3

• ◦ ◦ · · · ◦ ◦ L2

• • ◦ · · · ◦ ◦ L1

M1 M2 M3 · · · Ma−1 Ma

Figure 3

Proof. First, if a = b = 2, then it is immediate. If a ≥ 3 and b = 2, by
Lemma 3.3 it holds.

Now suppose a ≥ b ≥ 3 and assume that Li is a line defined by a linear form
Li = x0−(i−1)x2 and Mj is a line defined by a linear form Mj = x1−(j−1)x2

for i and j. Let ℘i,j be a point defined by two linear forms Li and Mj. Then
it is from [9, 11] that

IX = (L1L2, L1M1,M1M2), and

IY = (L1L2 · · ·Lb, L2L3 · · ·LbM3 · · ·Ma, L3 · · ·LbM2M3 · · ·Ma,M1M2 · · ·Ma).

Then an ideal IX + IY has 5-minimal generators, i.e.,

IX + IY = (L1L2, L1M1,M1M2, L2L3 · · ·LbM3 · · ·Ma, L3 · · ·LbM2M3 · · ·Ma),

and by [12, Theorem 2.1] the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 3 · · · 3
(a+b−4)-st

3 1 0 → .
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(i) Assume x0L
a+b−4
1 = La+b−3

1 ∈ [IX + IY]a+b−3. Then

x0L
a+b−4
1 = La+b−3

1 = F1L1L2 + F2L1M1 + F3M1M2

+ β1L2L3 · · ·LbM3 · · ·Ma + β2L3 · · ·LbM2M3 · · ·Ma

for some Fi ∈ Ra+b−5 and βj ∈ k. Since two linear forms L1 and M2

vanish on a point ℘1,2, we get that β1 = 0. Similarly, we have β2 = 0 as
well. This means that

x0L
a+b−4
1 = La+b−3

1 = F1L1L2 + F2L1M1 + F3M1M2 ∈ [IX]a+b−3,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a+ b− 2, . . . ).

(ii) Similarly, it is from Lemma 3.2 that the following 3-forms

x0L
a+b−5
1 , x1L

a+b−5
1 , x2L

a+b−5
1

are linearly independent. In particular, the following 2-forms

x1L
a+b−5
1 , x2L

a+b−5
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is

JL1 = H∨
R/(IX+IY) = (a+ b− 2, a+ b − 4, a+ b− 4).

It is from (i) and (ii) with Lemma 2.2 that an Artinian k-configuration
quotient R/(IX + IY) has the SLP, which completes the proof. �

We now slightly extend the previous result.

Lemma 3.5. Let X be a k-configuration of type (1, 2, 3) in a basic configuration

Z in P
2 of type (a, 3) with a ≥ 3 such that Y := Z − X. (X is a set of solid

6-points in Figure 4.) Then an Artinian k-configuration quotient R/(IX + IY)
has the SLP.

• ◦ ◦ ◦ · · · ◦ L3

• • ◦ ◦ · · · ◦ L2

• • • ◦ · · · ◦ L1

M1 M2 M3 M4 · · · Ma

Figure 4

Proof. If a = 3, then in Proposition 3.4, Z is a basic configuration of type (3, 3)
and hence, Y is a set of 6 points, lemma holds. So we suppose that a > 3. First
note that the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 6 · · ·
(a−2)-nd

6 3 1 0.
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We assume that Li is a line defined by a linear form Li = x0 − (i− 1)x2 and
Mj is a line defined by a linear form Mj = x1 − (j − 1)x2 for i and j. Let ℘i,j

be a point defined by two linear forms Li and Mj . Then

IX = (L1L2L3, L1L2M1, L1M1M2,M1M2M3), and

IY = (L1L2L3, L2L3M4 · · ·Ma, L3M3M4 · · ·Ma,M2M3 · · ·Ma).

So an ideal IX + IY has 7-minimal generators, i.e.,

IX + IY = (L1L2L3, L1L2M1, L1M1M2,M1M2M3,

L2L3M4 · · ·Ma, L3M3M4 · · ·Ma,M2M3 · · ·Ma).

Note that

HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a− 2.

(i) Assume x0L
a−1
1 = La

1 ∈ [IX + IY]a. Then

x0L
a−1
1 = La

1 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2L3M4 · · ·Ma + β2L3M3M4 · · ·Ma + β3M2M3 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M3 vanish
on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0 as
well. This means that

x0L
a−1
1 = La

1 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a+ 1, . . . ).

(ii) By the analogous argument as in (i), one can show that

x1L
a−2
1 , x2L

a−2
1 /∈ [IX + IY]a−1.

We now suppose that

αx1L
a−2
1 + βx2L

a−2
1 ∈ [IX + IY]a−1

for some α, β ∈ k. Then

αx1L
a−2
1 + βx2L

a−2
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2L3M4 · · ·Ma + β2L3M3M4 · · ·Ma + β3M2M3 · · ·Ma

for some Fi ∈ Ra−3 and βj ∈ k. Since two linear forms L1 and M3 vanish
on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0 as
well. This means that

αx1L
a−2
1 + βx2L

a−2
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a−1.



780 Y. R. KIM AND Y. S. SHIN

By Lemma 3.2, we get that

αx1 + βx2 = 0, i.e., α = β = 0,

which implies that two forms

x1L
a−2
1 , x2L

a−2
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ 1, a− 1, a− 1, . . . ).

(iii) It is from Lemma 3.2 that

x2
1L

a−4
1 , x1x2L

a−4
1 , x2

2L
a−4
1 /∈ [IX]a−2 = [IX + IY]a−2

and the following set of 6-forms

{x0L
a−3
1 , x1L

a−3
1 , x2L

a−3
1 , x2

1L
a−4
1 , x1x2L

a−4
1 , x2

2L
a−4
1 }

= {x2
0L

a−4
1 , x0x1L

a−4
1 , x0x2L

a−4
1 , x2

1L
a−4
1 , x1x2L

a−4
1 , x2

2L
a−4
1 }

is linearly independent. In particular, the 3-forms

x2
1L

a−4
1 , x1x2L

a−4
1 , x2

2L
a−4
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ 1, a− 1, a− 1, a− 3, a− 3, a− 3).

It is from (i) ∼ (iii) that the Jordan type JL1 is

JL1 = H∨
R/(IX+IY)

= (a+ 1, a− 1, a− 1, a− 3, a− 3, a− 3).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP. �

Theorem 3.6. Let X be a k-configuration of type (1, 2, 3) in a basic configu-

ration Z in P
2 of type (a, b) with a ≥ 4 and b ≥ 3, and let Y := Z−X. (X is a

set of solid 6-points in Figure 5.) Then an Artinian ring R/(IX + IY) has the

SLP.

◦ ◦ ◦ ◦ · · · ◦ Lb

...
...

...
...

...
...

...

• ◦ ◦ ◦ · · · ◦ L3

• • ◦ ◦ · · · ◦ L2

• • • ◦ · · · ◦ L1

M1 M2 M3 M4 · · · Ma

Figure 5
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Proof. If b = 3, then, by Lemma 3.5, it holds. So we suppose that b > 3. Note
that, by [12, Theorem 2.1], the Hilbert function of R/(IX + IY) is

HR/(IX+IY) : 1 3 6 · · ·
(a+b−5)-nd

6 3 1 0.

We assume that Li is a line defined by a linear form Li = x0 − (i− 1)x2 and
Mj is a line defined by a linear form Mj = x1 − (j − 1)x2 for i and j. Let ℘i,j

be a point defined by two linear forms Li and Mj . Then

IX = (L1L2L3, L1L2M1, L1M1M2,M1M2M3), and

IY = (L1L2 · · ·Lb, L2 · · ·LbM4 · · ·Ma, L3 · · ·LbM3 · · ·Ma,

L4 · · ·LbM2 · · ·Ma,M1M2M3 · · ·Ma).

So an ideal IX + IY has 7-minimal generators, i.e.,

IX + IY = (L1L2L3, L1L2M1, L1M1M2, M1M2M3,

L2 · · ·LbM4 · · ·Ma, L3 · · ·LbM3 · · ·Ma, L4 · · ·LbM2 · · ·Ma).

Note that

HR/(IX+IY)(i) = HR/IX(i)

for 0 ≤ i ≤ a+ b− 5.

(i) Assume x0L
a+b−4
1 = La+b−3

1 ∈ [IX + IY]a+b−3. Then

x0L
a+b−4
1 = La+b−3

1 = F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3

+ β1L2 · · ·LbM4 · · ·Ma + β2L3 · · ·LbM3 · · ·Ma

+ β3L4 · · ·LbM2 · · ·Ma

for some Fi ∈ Ra+b−6 and βj ∈ k. Since two linear forms L1 and M3

vanish on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0
as well. This means that

x0L
a+b−4
1 = La+b−3

1

= F1L1L2L3+ F2L1L2M1+ F3L1M1M2+ F4M1M2M3 ∈ [IX]a+b−3,

which is a contradiction (see Lemma 3.2). Hence the Jordan type of
HR/(IX+IY) is of the form

JL1 = (a+ b− 2, . . . ).

(ii) By the analogous argument as in (i), one can show that

x1L
a+b−5
1 , x2L

a+b−5
1 /∈ [IX]a+b−4 = [IX + IY]a+b−4.

We now suppose that the following 3-forms

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1 ∈ [IX + IY]a+b−4

for some α, β, γ ∈ k, that is,

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3
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+ β1L2 · · ·LbM4 · · ·Ma + β2L3 · · ·LbM3 · · ·Ma + β3L4 · · ·LbM2 · · ·Ma

for some Fi ∈ Ra+b−6 and βj ∈ k. Since two linear forms L1 and M3

vanish on a point ℘1,3, we get that β1 = 0. Similarly, we have β2 = β3 = 0
as well. This means that

αx0L
a+b−5
1 + βx1L

a+b−5
1 + βx2L

a+b−5
1

= F1L1L2L3 + F2L1L2M1 + F3L1M1M2 + F4M1M2M3 ∈ [IX]a+b−4.

Hence, Lemma 3.2, α = β = γ = 0, as we wished. This implies that the
3-forms

x0L
a+b−5
1 , x1L

a+b−5
1 , x2L

a+b−5
1

are linearly independent. In particular, the 2-forms

x1L
a+b−5
1 , x2L

a+b−5
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ b− 2, a+ b− 4, a+ b− 4, . . . ).

(iii) It is from Lemma 3.2 that the following 6-forms

x2
0L

a+b−7
1 , x0x1L

a+b−7
1 , x0x2L

a+b−7
1 , x2

1L
a+b−7
1 , x1x2L

a+b−7
1 , x2

2L
a+b−7
1

are linearly independent. In particular, the following 3-forms

x2
1L

a+b−7
1 , x1x2L

a+b−7
1 , x2

2L
a+b−7
1

are linearly independent. Hence the Jordan type of HR/(IX+IY) is of the
form

JL1 = (a+ b− 2, a+ b− 4, a+ b− 4, a+ b− 6, a+ b− 6, a+ b− 6).

It is from (i) ∼ (iii) that the Jordan type JL1 is

H∨
R/(IX+IY) = (a+ b− 2, a+ b− 4, a+ b− 4, a+ b − 6, a+ b− 6, a+ b− 6).

Therefore, by Lemma 2.2, an Artinian k-configuration quotient R/(IX + IY)
has the SLP, which completes the proof of this theorem. �

Remark 3.7. Theorem 3.6 has been proved if X is a k-configuration in P
2

of type (1, 2) or (1, 2, 3) in a basic configuration in P
2. However, if X is a k-

configuration in P
2 of type (1, 2, . . . , d) in a basic configuration in P

2 with d ≥ 4,
then it cannot be proved by the same method as in the proof of Theorem 3.6.
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