Browse > Article
http://dx.doi.org/10.4134/JKMS.j170035

AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY  

Kim, Young Rock (Major in Mathematics Education Graduate School of Education Hankuk University of Foreign Studies)
Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.4, 2018 , pp. 763-783 More about this Journal
Abstract
In this paper, we study an Artinian point-configuration quotient having the SLP. We show that an Artinian quotient of points in $\mathbb{p}^n$ has the SLP when the union of two sets of points has a specific Hilbert function. As an application, we prove that an Artinian linear star configuration quotient $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP if $\mathbb{X}$ and $\mathbb{Y}$ are linear starconfigurations in $\mathbb{p}^2$ of type s and t for $s{\geq}(^t_2)-1$ and $t{\geq}3$. We also show that an Artinian $\mathbb{k}$-configuration quotient $R/(I_{\mathbb{X}}+I_{\mathbb{Y}})$ has the SLP if $\mathbb{X}$ is a $\mathbb{k}$-configuration of type (1, 2) or (1, 2, 3) in $\mathbb{p}^2$, and $\mathbb{X}{\cup}\mathbb{Y}$ is a basic configuration in $\mathbb{p}^2$.
Keywords
Hilbert functions; star-configurations; linear star-configurations; the weak-Lefschetz property; the strong-Lefschetz property;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
2 Y. S. Shin, Star-configurations in ${\mathbb{P}^2}$ having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242.   DOI
3 Y. S. Shin, Some application of the union of two ${\mathbb{k}}$-configurations in ${\mathbb{P}^2}$, J. of Chungcheong Math. Soc. 27 (2014), no. 3, 413-418.   DOI
4 J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in ${\mathbb{P}^n}$ and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.   DOI
5 M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443.   DOI
6 E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20.   DOI
7 E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192.   DOI
8 M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in ${\mathbb{P}^n}$, J. of Alg. Geo. submitted.
9 A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in ${\mathbb{P}^n}$, J. Algebra 376 (2013), 279-299.   DOI
10 A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
11 A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
12 T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126.   DOI
13 A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.   DOI
14 A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in ${\mathbb{P}^2}$, J. Algebra 298 (2006), no. 2, 563-611.   DOI
15 A. V. Geramita and Y. S. Shin, k-configurations in ${\mathbb{P}^3}$ all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368.   DOI
16 T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324.   DOI
17 T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz Properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013.
18 Y. R. Kim and Y. S. Shin, Star-configurations in ${\mathbb{P}^n}$ and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873.   DOI
19 J. Migliore and R. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107.   DOI
20 J. Migliore and R. Miro-Roig, On the strong Lefschetz problem for uniform powers of general linear forms in k[x, y, z], Proc. Amer. Math. Soc. 146 (2018), no. 2, 507-523.
21 J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358.   DOI
22 J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in ${\mathbb{P}^n}$, J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133.   DOI