1 |
Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
|
2 |
Y. S. Shin, Star-configurations in having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242.
DOI
|
3 |
Y. S. Shin, Some application of the union of two -configurations in , J. of Chungcheong Math. Soc. 27 (2014), no. 3, 413-418.
DOI
|
4 |
J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
DOI
|
5 |
M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443.
DOI
|
6 |
E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20.
DOI
|
7 |
E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192.
DOI
|
8 |
M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in , J. of Alg. Geo. submitted.
|
9 |
A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in , J. Algebra 376 (2013), 279-299.
DOI
|
10 |
A. V. Geramita, B. Harbourne, J. C. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, In preparation.
|
11 |
A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
|
12 |
T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126.
DOI
|
13 |
A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
DOI
|
14 |
A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in , J. Algebra 298 (2006), no. 2, 563-611.
DOI
|
15 |
A. V. Geramita and Y. S. Shin, k-configurations in all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368.
DOI
|
16 |
T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324.
DOI
|
17 |
T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz Properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013.
|
18 |
Y. R. Kim and Y. S. Shin, Star-configurations in and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873.
DOI
|
19 |
J. Migliore and R. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107.
DOI
|
20 |
J. Migliore and R. Miro-Roig, On the strong Lefschetz problem for uniform powers of general linear forms in k[x, y, z], Proc. Amer. Math. Soc. 146 (2018), no. 2, 507-523.
|
21 |
J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358.
DOI
|
22 |
J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in , J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133.
DOI
|