• 제목/요약/키워드: Artificial Intelligence

검색결과 5,348건 처리시간 0.031초

스마트 식품 안전관리 추진현황 (The current status of smarter food safety management)

  • 권소영
    • 식품과학과 산업
    • /
    • 제54권3호
    • /
    • pp.124-131
    • /
    • 2021
  • 4차 산업혁명과 더불어 기술의 발전 속도는 더욱 빨라지고 있는 추세에 있다. 4차 산업혁명의 주요 핵심이 되는 기술들을 중심으로 산업구조, 사회환경과 메가트렌드가 변화하고 있다. 특히, 코로나 팬데믹의 상황은 혁신기술의 적용을 촉진하고 사회 모든 분야에 걸쳐 적용될 것을 요구하고 있다. 식품 산업은 노동집약적으로 이루어져 있고 사람 간 접촉이 불가피한 특성이 있기 때문에 코로나와 같은 상황에서는 기술의존도가 더욱 높아져 식품의 제조 및 가공에 기계 및 자동화 도입은 필수적이라고 볼 수 있다. 앞서 국내를 포함한 주요국들의 스마트 식품 안전관리 추진동향을 살펴본 결과, 인공지능이나 사물인터넷 등 사람이 아닌 스마트한 기술적 접근을 통해 사고예방 및 예측력을 강화하는 방향으로 발전해가고 있다. 빠르게 변화하고 있는 식품산업에 발맞춰 식품 안전관리에 있어서도 혁신기술을 빠르게 도입하려는 노력을 기울이고 있으므로 향후 몇 년 뒤에는 지금보다 빠른 식품사고 원인규명과 예측 및 분석능력 증대를 통해 사후관리가 아닌 사전적 대응체계로 전환해 나갈 수 있을 것으로 기대한다.

인공지능 기반 플랜트 도면 내 심볼 객체 자동화 검출 (Automatic Recognition of Symbol Objects in P&IDs using Artificial Intelligence)

  • 신호진;전은미;권도경;권준석;이철진
    • 플랜트 저널
    • /
    • 제17권3호
    • /
    • pp.37-41
    • /
    • 2021
  • P&ID(Piping and Instrument Diagram)는 플랜트의 장치 및 계장 정보를 집약적으로 담고 있는, 엔지니어링 핵심도면이다. 한 장의 P&ID에는 심볼로 표현된 수백 여개의 정보들이 존재하며, 이에 대한 디지털 전산화 작업이 수작업으로 진행되고 있어 많은 인력과 시간이 소요된다. 기존 연구들은 CNN 모델을 이용하여 도면 객체 검출에 성공하였으나, 도면 한 장당 약 30분, 인식률은 90% 정도로 현장에서 구현하기에는 부족한 성능이다. 따라서 본 연구에서는 영역 검출과 객체 인식을 동시에 처리하는 1-stage 객체 검출 알고리즘을 제안하였다. 이미지 레이블링 오픈소스 툴을 이용하여 학습 데이터를 구축하고 딥러닝 모델 학습을 통해 도면 내 심볼 이미지 인식 방법을 제안한다.

DEVELOPMENT TRENDS OF THE DIGITAL ECONOMY: E-BUSINESS, E-COMMERCE

  • Volkova, Nelia;Kuzmuk, Ihor;Oliinyk, Nataliia;Klymenko, Iryna;Dankanych, Andrii
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.186-198
    • /
    • 2021
  • The introduction of digital technologies affects most socio-economic processes and activities in the economy, from agriculture to public services. Even though the world is currently only in the early stages of digital transformation, the digital economy is growing rapidly, especially in developing countries. Shortly, digital platforms will be able to replace the "invisible hand" of the market and turn it into digital. Some digital platforms have already reached global reach in some sectors of the economy. The growing value of data and artificial intelligence is reflected in the high capitalization of these enterprises. Their growing role has far-reaching consequences for the organization of economic activity and integration into the field of e-business. However, their importance and level of development in different countries differ significantly. The main purpose of this article is an assessment of the level and trends of the digital economy in the world and the identification of homogeneous groups of states following the main trends in the development of its components from among the EU countries. The methodology of the conducted research is based on the use of general scientific research methods in the analysis of secondary sources and the application of statistical methods of correlation-regression and cluster analysis. Macroeconomic indicators and components of DESI (Digital Economy and Society Index) were used for the analysis. Results. Based on the analysis established that most developed countries have a medium level of digitalization of the business environment and a high level of digitalization of socially oriented public services, while countries with lower GDP focus their policies on building digital infrastructure and training qualified personnel. The study summarizes and analyzes current trends in digital technology, analyzes the level and dynamics of integration of digital technologies of the studied EU countries, the level of development of e-business and e-commerce. The conceptualization of mechanisms of creation of added value in the digital economy is offered and the possible consequences of digitalization of the economy of developing countries are generalized.

스마트 제조를 위한 AAS와 OPC UA기반 설비모니터링 시스템의 설계 및 구현 (Design and Implementation of Facility Monitoring System based on AAS and OPC UA for Smart Manufacturing)

  • 이용수;정종필
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.41-47
    • /
    • 2021
  • 전 세계적으로 제조업은 급진적인 변화에 직면해 있다. 독일을 시작으로 변화되고 있는 제조업은 스마트팩토리라는 이름으로 현재 전 세계적으로 제조업들이 도입하며 개선 및 발전되어 가고 있다. 인공지능, 클라우드 등의 IT기술들을 생산 현장에서 활용함으로 써 과거 제조업의 환경을 탈피하고자 하는 욕구가 증가 되어 가고 있다. 앞으로는 이러한 기술들을 어떻게 효율적이고 효과적으로 사용할 수 있는지에 대한 논의가 계속되고 있다. 점점 공장 영역에서 지역, 국가, 전 세계적으로 범위가 확대됨에 따라 상호작용에 대한 국제적인 표준의 필요성이 대두되고 있다. 본 논문에서는 설비, 센서 등을 자산으로 관리하고 OPC UA를 통해 수집된 설비 데이터를 모니터링을 하기 위한 설계 및 구현방법에 대해 제안한다.

엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처 (Using the Deep Learning for the System Architecture of Image Prediction)

  • 천은영;최성자
    • 디지털융복합연구
    • /
    • 제17권10호
    • /
    • pp.259-264
    • /
    • 2019
  • 본 논문에서는 엔터프라이즈 환경에서의 딥 러닝에 대한 이미지 예측 시스템 아키텍처를 제안한다. 엔터프라이즈 환경에 대해 인공지능 플랫폼으로 변환을 쉽게 하고, 인공지능 플랫폼이 파이선에 집중되어서 자바 중심의 엔터프라이즈 개발이 어려운 단점을 개선하기 위해 자바 중심의 아키텍처에서도 충분한 딥 러닝 서비스의 개발과 수정이 가능하도록 한다. 또한, 제안된 환경을 토대로 이미지 예측 실험을 통해 기존에 학습된 딥 러닝 아키텍처 환경에서의 정확도가 높은 예측 시스템을 제안한다. 실험을 통해 딥 러닝이 수행되기 위해 제공된 이미지 예에서 95.23%의 정확도를 보이며, 제안된 모델은 유사한 다른 모델에 비교해 96.54%의 정확도를 보인다. 제시된 아키텍처를 활용하여 활발한 엔터프라이즈급 환경의 딥 러닝 서비스가 개발 및 제공될 것으로 보이며, 기존 엔터프라이즈 환경이 딥 러닝 아키텍처가 탑재된 환경으로 전환이 활발히 이루어질 것이다.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.

인공지능을 이용하여 매출성장성과 거시지표 분석을 통한 주가 예측 연구 (A study on stock price prediction through analysis of sales growth performance and macro-indicators using artificial intelligence)

  • 홍성혁
    • 융합정보논문지
    • /
    • 제11권1호
    • /
    • pp.28-33
    • /
    • 2021
  • 주가는 그 기업의 미래 가치의 척도이기 때문에 주가를 분석할 때 기업의 성장성인 매출과 이익 등을 고려하여 주식을 투자한다. 기관투자자들은 종목 선정 기준을 잡기 위해서 현재 산업의 트렌드와 거시경제 지표를 보고 성장 가능한 관련 분야를 먼저 정하고 관련 기업을 선정한 후 기업에 대한 분석을 하고 목표가를 설정 후에 매수를 하고 목표가에 도달하면 매도하는 방식으로 주식 매매를 실시한다. 하지만, 일반 개인 투자자들은 경제에 대한 지식이 기관이나 외국인 투자자에 비교하여 부족하고, 기업에 대한 재무재표 분석이나 성장성에 대한 분석 없이 전문가나 지인의 추천종목을 따라 투자를 하여 기관투자자나 외국인 투자자들 보다 수익률 면에서 낮은 편이다. 따라서, 본 연구에서는 기업의 성장성인 매출과 이익 등을 고려한 지표인 ROE를 분석하여 저평가된 종목을 선택하고, 선택된 종목의 주가 흐름을 딥러닝 알고리즘을 통하여 예측하는 연구방법을 제안하여 투기가 아닌 건전한 투자에 도움이 되기 위해 본 연구를 진행한다.

고령자를 위한 AI 기반의 Wellbeing 지원 시스템의 연구 (A Study on Wellbeing Support System for the Elderly using AI)

  • 조면균
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.16-24
    • /
    • 2021
  • 본 논문은 고령화 사회로 진입함에 따라 급속히 늘어나는 고령자를 위하여, IoT와 인공지능 기술을 적극 활용하여 고령자로 하여금 행복한 노년을 영위할 수 있도록 도와주는 smart aging 서비스를 소개한다. 특히 고령화문제를 해결하려는 기존의 복지개념에서 탈피하여 긴급 상황에서 자신을 보호하고 감성을 만족시키어 활기찬 고령사회 구축으로의 패러다임 변화를 이끌어내는, 미래지향의 고령 친화적 wellbeing 지원 시스템을 제안한다. IoT(사물인터넷)와 AI(인공지능)를 도입하여 고령자의 생활정보로부터 생활상황 및 감성상태를 판단하여 긴급 상황 대응, 기분전환과 감성 위로 제공 및 모임을 추천한다. 제안 시스템은 맥박, 위험한 단어사용 및 외부소통 등의 정보를 입력하면 인공지능 기법을 이용하여 우울증의 정도를 판단해줌으로써, 기존 헬스케어 중심의 복지개념에서 탈피하여 고령자에게 감정적인 행복감을 제공하는 새로운 개념의 wellbeing 지원 시스템의 실현가능성을 보여주었다고 생각한다.

인공지능활용 메이커교육 프로그램 적용 영어 교수학습 모형 개발 (Development of English Teaching Model Applying Artificial Intelligence through Maker Education)

  • 신명희
    • 한국융합학회논문지
    • /
    • 제12권3호
    • /
    • pp.61-67
    • /
    • 2021
  • 본 연구의 목적은 EFL학습자들을 위해 구체적 학습활동 모형을 통해 교실 수업의 한계를 극복하고 의사소통의 기회를 창출해 내고자 하였다. 연구 방법으로는 모형개발, 타당화, 적용으로 전략, 지침 등을 개발하고 도출하고자 2019년 3월부터 6월까지 실시하였다. 사전학습에서는 인공지능을 활용하여 교실 밖 자기 주도적 학습을 유도하고, 본 수업에서는 문제 해결 능력을 향상시키고 학습 내재화를 목표로 협력과 참여를 통해 결과물을 만들어내는 메이커 교육을 적용한 학습자 중심활동으로 구성하였다. 두 번의 타당성 테스트 후 수정 된 모델을 실험 그룹에 적용한 결과 창의성을 제외한 자기 주도, 관심, 문제 해결 및 참여도가 유의미했고 사후 테스트 결과는 모든 분야에서 유의미한 결과를 나타냄으로 연구 기대효과의 유용성을 확인하였다. 다만 영어 학습과 관련된 인공 지능을 수업에 쉽게 적용할 수 있는 소프트웨어의 개발과 방법에 대한 심화연구 그리고 학습활동에서 보다 체계적인 메이커 교육과의 융합활동의 제시 등 지속적인 후속 연구가 필요하다.

Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images

  • Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • 대한치과교정학회지
    • /
    • 제51권2호
    • /
    • pp.77-85
    • /
    • 2021
  • Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.