• 제목/요약/키워드: Arbitrary shape

검색결과 345건 처리시간 0.027초

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

토션빔 후륜 현가장치의 구조설계에 관한 연구 (A Study on Structural Design of Torsion Beam Rear Suspension)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.146-153
    • /
    • 2005
  • Structural design of the torsion beam rear suspension is investigated by calculating warping of the torsion beam. Since the longitudinal displacement in the cross section of the torsion beam due to torsional moment causes normal stress across the beam restrained from outside at both ends, the profile of torsion beam needs to be designed considering the warping. Warping function of the beam is derived with the parameters of cross section fur the arbitrary shapes of torsion beam profiles assuming thin-walled open section. From comparing the warping calculated for two different beam profiles, the design method for the torsion beam in the view point of low stress is discussed. It is shown that the gusset used to reinforce the torsion beam can be optimized in accordance with warping shape. The method to fix the end point of the gusset is proposed to minimize the stress concentrated on the end point of the gusset produced during torsional moment. The result from finite element analysis shows the stress is minimized when the height of gusset end point is coincident with the point where warping of the beam is minimized.

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

LINEAR POLARIZATION OF A DOUBLE PEAKED BROAD EMISSION LINE IN ACTIVE GALACTIC NUCLEI

  • Lee, Hee-Won
    • 천문학회지
    • /
    • 제44권2호
    • /
    • pp.59-65
    • /
    • 2011
  • A small number of active galactic nuclei are known to exhibit prominent double peak emission profiles that are well-fitted by a relativistic accretion disk model. We develop a Monte Carlo code to compute the linear polarization of a double peaked broad emission line arising from Thomson scattering. A Keplerian accretion disk is adopted for the double peak emission line region and the geometry is assumed to be Schwarzschild. Far from the accretion disk where flat Minkowski geometry is appropriate, we place an azimuthally symmetric scattering region in the shape of a spherical shell sliced with ${\Delta}{\mu}=0.1$. Adopting a Monte Carlo method we generate line photons in the accretion disk in arbitrary directions in the local rest frame and follow the geodesic paths of the photons until they hit the scattering region. The profile of the polarized flux is mainly determined by the relative location of the scattering region with respect to the emission source. When the scattering region is in the polar direction, the degree of linear polarization also shows a double peak structure. Under favorable conditions we show that up to 0.6% linear polarization may be obtained. We conclude that spectropolarimetry can be a powerful probe to reveal much information regarding the accretion disk geometry of these active galactic nuclei.

얇은 유전체의 산란특성 해석을 위한 근사식 (An Approximate Formulation for Scattering by Very Thin Dielectric Scatters)

  • Koh, Il-Suek
    • 한국전자파학회논문지
    • /
    • 제15권8호
    • /
    • pp.765-774
    • /
    • 2004
  • 본 논문에서 얇은 균질 유전체의 산란해석을 위한 근사식이 유도된다. 이 해는 volumetric integral equation을 바탕으로 Fourier transform형식으로 나타내어진다. 얇은 무한 평면구조에서는 구한 식은 정확한 해로 떨어지며 다른 2D 또는 3D 구조에 대해서는 수치해석 결과와 비교하여 구한 식의 유용성을 보였다. 특히 TM파가 edge-on 방향으로 입사할 경우 반 무한 평면 구조에서의 산란에 대한 closed-form식을 구했다. 구한 식은 넓은 범위의 유전률에 대해 정확한 결과를 예측한다.

대역폭 확장 특성을 갖는 소형 RFID 태그 안테나 (A Small RFID Tag Antenna with Bandwidth-Enhanced Characteristic)

  • 이우성;장기훈;윤영중;이병무
    • 한국전자파학회논문지
    • /
    • 제17권6호
    • /
    • pp.511-518
    • /
    • 2006
  • 본 논문에서는 대역폭이 확장된 특성을 가지는 UHF 대역 수동형 RFID 태그를 제안하였다. 제안된 안테나는 미앤더 안테나의 구조를 사용하여 소형화 특성을 얻었으며, 두 개의 방사체를 이용하여 이중 공진을 발생시킴으로써 대역폭 확장의 특성을 얻었다. 두 방사체의 위치 및 길이를 조절하여 제안된 안테나는 스미스 차트 상에서 임의의 임피던스 지점에서 이중 공진을 만들 수 있었으며, 넓은 대역에서 태그 칩과 정합을 이룰 수 있었다. 또한 시뮬레이션 및 측정을 통하여 제안된 안테나가 하나의 공진을 가지는 태그 안테나보다 대역폭이 확장되었음을 확인하였다.

압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측 (Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient)

  • 백성구;정명균;임효재
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

수중 폭발 충격을 받는 잠수함 액화 산소 탱크의 구조-유체 연성 해석 (Structure-Fluid Interaction Analysis for the Submarine LOX Tank subjected to Underwater Explosion Impact)

  • 신형철;김규성;김재현;전재황
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.419-424
    • /
    • 2004
  • we performed the underwater explosion analysis for the liquefied oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, we reviewed the theory and application of underwater explosion analysis using Structure-Fluid Interaction technique and its finite element modeling scheme. Next, we modeled the explosive and sea water as fluid elements, the LOX tank as structural elements and the interface between two regions as ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. As the analysis result, the shock pressure due explosion propagated into the water region and hit the structure region. The plastic deformation and the equivalent stress highly appeared at the web frame and the shock mount of LOX structure, but these values were acceptable for design criteria.

  • PDF

비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 - (Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method -)

  • 김종태;명현국
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.