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Abstract

Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill
crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the
process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare
with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a
viable model, we propose the ’'blind neural-based range-division domain-clustering piecewise-linear’ modeling scheme.
The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)
training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting
matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the
effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with
the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces

the magnitudes of errors considerably. Approximatly 10-fold better performance results.
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1. Introduction

If the number of neurons in the hidden layer is
sufficiently large, the two-layer neural network with
tangent sigmoidal and pure linear activation function for
the hidden- and output-layer respectively can
approximate any nonlinear functions [1]. Although the
convenient way of deciding the number of neurons in
hidden layer is not established yet, there exists a
heuristic way of judging the well-fitness of trained
function by neural network [2].

A neural network can be trained to model an arbitrary
function provided that we have enough input and output
vectors for the supervised training. Besides, it has the
generalization capability for the untrained input data set.
In spite of these merits, the critical shortcoming of the
neural network modeling is that the neural network
training itself does not give any input-output mappings
in elementary forms.

In many cases, we are interested in finding the
input-output relations in closed—form equations.
Unfortunately we often start with a very unformatted
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real world data like the mini-mill crown values in ASC
(Automatic Shape Control) of steel rolling process. The
ASC 1is typified by the control of strip crown which is
defined by the difference between the center height and
the average of edge heights in the cross-sectional shape
of steel strip. In our case, we have twenty—one variables
of input data space, and one output target vector of strip
crown values. Some of the input variables are highly
correlated and some are not. Since, in the rolling process,
the steel strip is gradually rolled thinner through several
rollers in tandem, any in/out strip thickness of rollers are
tightly correlated. As a consequence, it usually requires a
pre-processing of the data including the normalization,
distribution and correlation analysis.

For the purpose of fully utilizing the generalization
capability of neural network and comparing the
neural-based model with the scattered analytical model
of mini-mill process in isolated electro-mechanical forms
[3], a problem at hand, in our case, is the ‘blind
modeling of input space versus output crown’ without
considering any prior data analysis. In the statistics field,
aforementioned 'blind modeling’ will be the 'exploratory
data mining’ [4].

The justification of this problem statement is that a
given mini-mill rolling process should handle any
different kinds of steel strips. The strip can have
different starting thickness, different carbon
concentration, and different cross—sectional width, etc.
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In modeling a multivariate function (twenty-one
variables in our case), the most difficult part is how to
divide the original data set into the modeling and
evaluating sets. Categorizing the original data into the
one for training the neural network and the other for
evaluating the network requires careful considerations. If
we use well-behaved data only for modeling, the result
may not reveal the details of data structures. On the
other hand, if we use too much details of data variations,
it may include abnormal behavior of data.

In this paper, we propose a new blind modeling (data
mining) scheme of 'blind neural-based range -division
domain-clustering piecewise-linear’ modeling. The basic
ideas are: 1) dividing the range of target data, 2)
clustering the corresponding input space vector, 3)
training the neural network with clustered prototypes to
make the network convergence smooth and 4) solving
the resulting matrix equations with pseudo-inverse to
alleviate ill-conditioning problem. This proposed scheme
considers the aspects of smoothing of data trends, early
termination of neural network training, ill-conditioned
matrix treatment, and the effective rolling process
modeling.

In section 2, background information for the neural
network modeling is introduced. We propose the
range-division modeling scheme for the real steel rolling
process in section 3. The modeling example of POSCO
process data is presented in section 4. The concluding
remarks recap the salient ideas.

2. Function Modeling with Neural Network

As the FFN (Feed Forward Network) structure with
two layers may have tangent sigmoid and purely linear
activation functions for hidden and output Ilayer
respectively, FFN can be used to model arbitrary
functions. It is quite analogous to the Fourier Series
function approximation scheme. Unfortunately, in the
neural network training, there is no such well established
procedures except the back propagation. As a result, it is
quite uncommon to get the closed-form models out of
neural network training.

In the function approximation paradigm, many
researches have been devoted to the proof of ridge
(sigmoidal) function approximation capability for the
neural network applications [1, 2, 5. In spite of those
efforts, there are not many constructive proofs of
deciding the weights of network for an arbitrary
approximation precision.

Three important aspects of neural-based modeling
relevant to our purpose are: 1) the adequate partition of
the real data for the best modeling, 2) the decision
criteria for the network training strategy, and 3) the
selection of an appropriate modeling structure.

The most natural way of training-data partition policy
is the random test vector selection [6]. As a simple
example, if there are 500 data, we can choose 250 data
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for neural network training and the other 250 data for
evaluation of network convergence. Moreover, the
influence of outliers contained in the real data might be
critical to the modeling behavior of neural network.
Some techniques for identifying the outliers and reducing
the effect of these outliers are proposed in literature [7].
Open problem of using neural network is the decision
of the number of neurons for a specific function
modeling. In addition to this matter, a closely related
issue is the over- and under—fitting of network by a
given number of neurons in a hidden layer. One good
strategy avoiding (especially) an overfitting of the
network is the so—called 'early-stopping’ [2, 6). By early
stopping the network training before it enters into an
overfitting status, we can reduce the possibility of outlier
dominance and the abnormal modeling behavior.

3. Range-division Modeling Scheme

3.1 Basic Idea

In real data application, the modeling structure can
never be determined by the correlative properties of
predictor variables (input domain space) since we do not
know the governing function between the input and
output relations.

The ultimate input-output mapping should be guided
by the target values of the responsive (range) variable.
In the network learning paradigm, it is the 'supervised
learning.” As an unavoidable consequence, the first step
to the real data modeling is the division of the target
ranges. Especially in the multivariate case when the
cross—correlations are not clear yet, the target range is
the only guidance to begin with.

Once we divide the range, to say, in equal intervals,
all the corresponding input space data can be partitioned
effectively. Binary—-tree like partition strategy is reported
in [8]. Once again, since we do not have the model
function, a simple but an effective way of manipulating
the input space is the unsupervised clustering of that
space. The most popular categorization can be done by
the FCM algorithm. We train the neural network with
clustered prototypes (cluster means) and the common
target values. To alleviate the problem of unequally
populated range-division categories, we may use the best
partition strategies such as the binary-tree partition or
the majority-voting FCM [9].

After the partition, the center value of a given interval
is used for the representative value for the corresponding
clusters. Since the domain data are clustered into rmore
than one, there exist several clusters to share the
commmon representative target value and ultimately this
common target value may cause the ill-conditioning
problem of resulting matrix equations.

To cope with the over-fitting, we stop the network
before it enters into a fully trained status. The resulting
under-fitted target values show the discrepancies
comparing with the representative target values. As the



neural network tries to reduce the output errors in such
a way to adjust the weights in the opposite direction to
the gradient error derivatives, we substitute the original
target values with the values that are subtracted by the
scaled - discrepancies. By this arrangement, the
ill~conditioning tendency might be mitigated. Besides, the
slow convergence of network training is not a critical
problem, in this case, due to the early-stopping.

The final step for the neural-based modeling is the
fixations of the resulting matrix equations. If we try to
solve the equations with only one target sub-range, we
will encounter the under-determined case. To combine
several target sub-ranges together into one matrix
equation gives the over-determined case. Then it can be
easily solved by the pseudo-inverse [4]. Moreover, in the
piecewise linear model, combining many intervals into a
" larger one reduces the total number of piecewise linear
model segments.

3.2 Domain—-clustering Piecewise-linear Model

We start with the three days’ amount of POSCO
(GyangYang Works) real data which are specially
arranged for the purpose of our approach. The mini—mill
process data (ASC function turned off) can be expressed
as the tuple (X, C), where X is the input vector
(independent variables) and C is the output vector
(dependent variable; crown). The tuple (X, C) consists of
885x22 data matrix where X (885%21) has 21 variables
of sample size 885 and the last column (885%1) is the
target crown vector.

The algorithm for the proposed model is shown by the
flow chart diagram in Figure 1. The target crown is
divided into 100 sub-ranges. Therefore, the sub-interval
has the width of approximately 1#m of crown values.
We use the center value of each interval for the
representative target value for neural network training.
The resulting 100 sub-ranges’ input spaces are clustered
by FCM algorithm.

The maximum allowable number of prototypes is
decided by the off-line simulation using s-validity
measure [10). Since the use of optimum number of
prototypes is not critically required in our case, we use a
fixed number of clusters for every sub-interval. With
five most-populated sub-interval simulations, the
maximum allowable number of prototypes is chosen to
eight by average. The sub-intervals that contain less
data samples than maximum allowable prototypes keep
the original data without FCM clustering. The total
number of prototypes (including the samples without
FCM clustering) obtained is 402.

Then, these prototypes and the representative target
crowns are inputted to the neural network which is
structured with one hidden layer of 100 neurons and one
output node equipped with tangent sigmoidal and purely
linear activation functions respectively.

The number of the hidden layer neurons has been
guided by the heuristic that the maximum number of
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neurons is calculated by #(2n+1) where n is the
number of input variables adapted by [2]. Since the
number of hidden layers obtained above is the upper
bound for the function approximator, we simulate the
neural network with starting hidden layer neurons of
800. Then, we down-size the number of hidden layer
neurons by 25 neurons and re-simulate. The MSE (mean
square error) values of network training at 300 epoch are
recorded in each simulation and we choose the smallest
possible number of hidden layer neurons that does not
increase the MSE considerably. We found that 40 to 50
neurons increase the MSE considerably. For safety
margin, 100 neurons in the hidden layer is selected for
the subsequent procedures.
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v
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v

Training data preparation
( cluster prototypes,
representative target value )

/ Mini—mill process data
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activation, Training neural network J
traingdm training,
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100 neurons y
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Figure 1. The flowchart of the piecewise-linear
model proposed

The decision of the early-stop epochs is made after
the ‘random equal partition’ strategy proposed by [6].
We randomly select half of the data samples for the
neural network training and use the other half for
generalization. We record the generalization error for
every particular partition. We chose 2000 epochs, the
appropriate number of epochs, by averaging the
minimum error epochs after five such random equal
partition simulations (see Figure 4, in section 4.2).

Since each sub-range has multiple prototypes and use
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the same representative crown value for the matrix
equation, it is desirable to perturb the crown value a
little bit. For this purpose, the result of neural network
training TNN is absorbed into the matrix equation as a
scaled negative perturbation. The representative crown
value C is substituted by

C — A4T, (1

where AT is C — Tyy

The final matrix equation for the piecewise linear
model is arranged as follows. The parameterized model
has the general structure of

C = 01X1 + a2X2 + -+ a21X21 + ay, (2)

where g, is the bias.

If we use the variable name A (since the data are
changed after neural training) instead of X, and rewrite
(2) in matrix form, then

C = A @X’ (3)
where the estimation parameter vector

@X = [01 as > ag a()]T. (4)

The parameter vector @y can be conveniently solved by
pseudo-inverse format.

4. Modeling Example

4.1 Steel Rollirig System Configuration

The steel rolling process of POSCO plant can be
figured briefly as in Figure 2. From the furnace, the thin
slab of below 100 mm thickness is fed into the reduction
unit. After the re-coiling, the coil is fed into the rollers F
of five in tandem. To control the shape of steel, the
profile meters to measure-the thickness are distributed
along the cross-sectional width. To maintain the quality
of production steel shape, the rolling force, the bending
force of working rolls, pair crossing angle of working
roll, etc., are controlled by appropriate measures.

eec furnace 000 ey
i profile meter |
FI F2 F3 F4 F5 Eﬂmzwmﬂ]i
M,L‘Q@;.‘b 00 00000+
e 00® 6000000
Reduction Unit -
(Rough Mill equiv.) btw stands; Sm X-ray thickness
meter af center

Figure 2. Steel rolling configuration of mini—mill
process.

42 Linear Model Results

We use the POSCO (GyangYang works) real data,
that are acquired from three days’ amount of logged
process data, as the test bed. For the enhanced
complexity of the modeling, the ASC function has been
shut off.
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In figure 3, we present a simple neural network
training result trained up to 2,000 epochs. The ‘0’ marks
indicate the original sorted samples and the '+’ marks
are the trained crown values. The neural network used
in the simulation has 100 neurons in one hidden-layer.
The training epochs are allowed to be only 2,000 since,
at that training epoch, the network begins to overfit. The
training result is used for the target performance
criterion of our proposed scheme.
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index

Crown data trained 2,000 epochs with 100

neurons: 'o’; original sample, ‘+’; nnet

crown.

100 200 300

Figure 3.

In Figure 4, the early-stopping epoch simulation
results are represented. The beginning epoch of
overfitting is chosen from the minimum point of the
generalization error. In this particular simulation, the
generalization MSE (solid-line) has the minimum at 1744
epoch. After 5 such simulations, we choose 2000 epoch
by average.
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As ;’nentioned before, it is not our objective to train
the neural network with given data, and use those
resulting weights to generalize. Therefore, we do not
need to train the network as much period of epochs. The



training comes to a halt at 2000 epochs and the result
has been fed to the piecewise modeling routine to
perturb the representative crown values as indicated by
Equation (1).

Figure 5 shows the corresponding condition numbers
of the sectional ‘A’ matrixes. Each sectional tuple (A, C)
that is used to piecewise regression consists of 40
equations. The purpose of this simulation is the
identification of the ill-conditioned sectional matrixes by
the condition numbers.

condition number

200 250 300
sub-range index

Figure 5. Sectional condition numbers of piecewise
linear model

4.3 Comparison with Conventional Regression

The regression result by the conventional statistical
regression method is used as the test vehicle to the
evaluation of the proposed scheme. The procedures to
obtain a regression model is quite well-known [4].
However, the modeling by the statistical regression also
requires the modeling and generalization phases. Without
these schemes, there are not many ways to accomodate
the rejection of noise and/or outliers. Whereas, the
proposed neural-based scheme aims to provide the
generalization capability without separate modeling and
generalization phases. The neural-based scheme
implicitly includes the generalization phase.

Figures 6 and 7 summarizes the final neural-based
modeling results. In each figure, the original crown
samples are sorted and indicated by ‘o’ marks and the
calculated crown values from the regression model by
'+'. Figure 6 shows the result of the proposed,
neural-based scheme. We can see the good
generalization trends except in the middle section of the
samples. We are now working on this problem to fix the
causes of poorly-fitted middle part.

Figure 7 is generated by regressing the half of the
sample data and generalizing with entire samples.
Comparing with the proposed scheme, we can deduce
that the absolute generalization error is uniformly
scattered over all crown ranges.

Due to the different nature of the approaches, two
methods in Figure 6 and Figure 7 can not be directly
compared. However, when using the MSE as the
performance measure, the neural-based method generates
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the MSE of 1266 and the MSE of 11393 by the
conventional regression method. Hence, roughly 10-fold
MSE reduction is accomplished.

During the simulation, we did not consider the issues
of: 1) the complete outlier analysis, 2) any ‘a priori’
correlation analyses between the input variables. Albeit,
the proposed scheme has been tested successfully and
the results are very convincing.

crown (jm)

400 500 600 700 HOC 900
index

200 300

The generalization by the proposed
neural-based regression scheme

crown (um)

Figure 7. The generalization by the conventional
statistical regression scheme

5. Concluding Remarks

We have proposed the neural-based 'blind piecewise
-linear, range-division, domain—clustering’ modeling scheme.

The proposed scheme considers the issues of 1)
over-fitting of neural network training, 2) partition of
data validation, 3) potentially ill-conditioned matrix
problems. Also, various ways of effectively clustering
the input space by, to say, the majority-voting FCM are
under consideration.

The results with POSCO real data support the
effectiveness of the proposed modeling scheme. By the
neural-based scheme, approximately 10-fold better MSE
performance compared with the conventional regression
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scheme has been demonstrated. Using the nonlinear
spline model, and the principal component analysis are
left for the further studies.
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